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Overview
• Introduce nPrint, a standard data representation for network 

traffic analysis problems 

• Remove human driven feature engineering step from the typical 
machine learning workflow for a class of network traffic 
classification problems 

• Show equivalent or better performance than widely used device and 
Passive OS Detection tools in passive fingerprinting (p0f), active 
fingerprinting (Nmap), and application identification
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Machine Learning in Networking
• Device fingerprinting 

• Passive OS Detection 

• Website fingerprinting 

• Protocol fingerprinting 

• Application identification
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Machine Learning in Networking
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2. Gather Network Traffic

1. Hypothesize Classification Problem

3. Hand Engineer Features Predictive of Task

4. Train Model using Features
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Machine Learning in Networking
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2. Gather Network Traffic

1. Hypothesize Classification Problem

3. Hand Engineer Features Predictive of Task

4. Train Model using Features

Bulk of Time spent here:  
Can we remove this step?
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Outline
• Motivation 
• Methodology 
• nPrint - Active Device Fingerprinting 
• nPrint - Application Identification 
• Conclusions
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Inspiration
• Inspiration - deep learning techniques perform well with problems 

related to image classification, where pictures have a standard 
representation of values 
- Related work shows deep learning techniques effective in website 

fingerprinting for Tor [1,2] 

• Problem! Outside of Tor, network traffic is not as simple
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Packet Representation - Requirements

8



12/11/20

Packet Representation - Completeness 

• Complete: each feature is represented for every packet 
- Every field in each packet must be able to be included in the 

representation 

- Our intuition is that the models can determine which features are 
important for a given problem without human guidance 
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Packet Representation - Constant Size Per 
Problem

• Complete: each feature is represented for every packet 

• Constant Size Per Problem: the size of the representation is the 
same for each packet 
- Requirement for many machine learning techniques
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Packet Representation - Semantic
• Semantic view involves packets broken into headers 

• Encode each header field as a feature 

• Constant size
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Packet Representation - Semantic
• Problem - Loses the ordering of options! 

- Example - TCP Options 

• Problem - How do we represent less structured parts of the packet? 
- Example: Payloads can’t really be represented numerically 

• Problem -Normalization requires multiple passes of the data
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Packet Representation -Inherently Normalized

• Complete: each feature is represented for every packet 

• Constant size per problem: the size of the representation is the 
same for each packet 

• Inherently Normalized: each feature ranges between 0 and 1
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Packet Representation - Naive Binary
• Turn classic semantic view of packets on its head 

- think of packets as a collection of bits 

• Complete - each bit can be represented 

• Inherently Normalized - each feature represented between 0 and 1
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Packet Representation - Naive Binary

• Problem! - different bits (features) in different packets can have 
different meanings
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Packet Representation -Naive Binary

• Even worse when we have different types of packets…
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Packet Representation - Alignment
• Complete: each feature is represented for every packet 

• Constant size: the size of the representation is the same for each 
packet 

• Inherently Normalized: each feature ranges between 0 and 1 

• Aligned: every location in the representation has the same meaning 
across all packets 
- Encodes semantic structure 
- Allows for interpretability
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Packet Representation - nPrint
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New Bottleneck
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Bulk of Time now spent here:  
Can we remove this step?
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Training Models
• Previous work (including ours): 

- Pick your favorite model(s) 
- Write code to search some hyperparameters for that model 
- Choose the best one in your search space 

• AutoML 
- Do the following in a more principled manner: 

- Model selection 
- Feature selection 
- Hyperparameter search
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AutoGluon AutoML
• Allow state-of-the-art AutoML to perform all model optimizations 

• Achieves higher performance than other tools due to model 
ensembling. 

• Allows us to train, optimize, and test over 50 models from 5 
different base model classes
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The nPrint Pipeline
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Outline
• Motivation 
• Methodology 
• nPrint - Active Device Fingerprinting 
• nPrint - Application Identification 
• Conclusions
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Active Device Fingerprinting- Dataset
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The nPrint Pipeline
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Active Device Fingerprinting- Gathering Traffic

• Leverage Nmap, well known and used remote device fingerprinting 
tool 

• Over 20 years of hand curated features and a hand-developed 
heuristic to fingerprint remote devices
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(13 TCP), (2 ICMP), (1 UDP)

Transform responses into hand-engineered  
features curated for over 20 years.

Compare Features to Fingerprints in database 
Using human-developed heuristic
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The nPrint Pipeline
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Active Device Fingerprinting- Packet 
Transformation

• 21 uniquely named responses 
from the sent Nmap probes 

• Create fingerprint picture by 
sorting the responses and 
concatenating them 

• Flattened version of the 2D 
image to the right
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Nmap - Features 
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The nPrint Pipeline
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Active Device Fingerprinting-  
Outperforming Nmap
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Active Device Fingerprinting- Feature 
Importance

• Interpretable machine learning 

• Automatically learns features encoded 
into device fingerprinting tools 
- IP TTL 
- TCP options, window size

33



12/11/20

Outline
• Motivation 
• Methodology 
• nPrint - Active Device Fingerprinting 
• nPrint - Application Identification 
• Conclusions
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Application Identification - Dataset
• Collection of ~7000 dTLS handshakes in an effort to identify 

Snowflake, a new pluggable Transport in Tor 

• Manual feature engineering leads to 99% accuracy on just the 
application. Can we match this with the nPrint pipeline on a harder 
problem?
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Application Identification - Performance

• nPrint can automatically detect features in a noisy environment 

• nPrint performs well across models and trains quickly
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Go try it!
• nPrint is publicly available 

- Ethernet, IPv4, fixed IPv6 headers, UDP, TCP, ICMP, payloads 
- Relative timestamps 
- Absolute timestamps 
- Formats: live capture, PCAPs, CSV scan data (Zmap) 

• nPrint runs in a variety of environments 
- ~300KB memory footprint 
- Roughly zero loss on 10 GbE university link with pf_ring  

• nPrintML is publicly available 
- Combines nPrint and AutoGluon 
- Application Identification case study: 

• “nprintml —pcap-dir pcaps/ -L labels.csv -a pcap -4 -u -p 10” 
- Passive OS detection case study: 

• “nprintml -P traffic.pcap -L labels.csv -a index -4 -t”
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Conclusions
• Introduce nPrint, a standard data representation for network 

traffic analysis problems 

• Remove human driven feature engineering step from typical 
machine learning workflow for network traffic classification 
problems 

• Show better performance than widely used device and OS 
fingerprinting tools
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