
12/11/20

nPrint:
Standard Packet-level

Network Traffic Analysis
nprint.github.io/nprint/

Jordan Holland, Paul Schmitt, Nick Feamster, Prateek Mittal

1

12/11/20

Overview
• Introduce nPrint, a standard data representation for network

traffic analysis problems

• Remove human driven feature engineering step from the typical
machine learning workflow for a class of network traffic
classification problems

• Show equivalent or better performance than widely used device and
Passive OS Detection tools in passive fingerprinting (p0f), active
fingerprinting (Nmap), and application identification

2

12/11/20

Machine Learning in Networking
• Device fingerprinting

• Passive OS Detection

• Website fingerprinting

• Protocol fingerprinting

• Application identification

3

12/11/20

Machine Learning in Networking

4

2. Gather Network Traffic

1. Hypothesize Classification Problem

3. Hand Engineer Features Predictive of Task

4. Train Model using Features

12/11/20

Machine Learning in Networking

5

2. Gather Network Traffic

1. Hypothesize Classification Problem

3. Hand Engineer Features Predictive of Task

4. Train Model using Features

Bulk of Time spent here:
Can we remove this step?

12/11/20

Outline
• Motivation
• Methodology
• nPrint - Active Device Fingerprinting
• nPrint - Application Identification
• Conclusions

6

12/11/20

Inspiration
• Inspiration - deep learning techniques perform well with problems

related to image classification, where pictures have a standard
representation of values
- Related work shows deep learning techniques effective in website

fingerprinting for Tor [1,2]

• Problem! Outside of Tor, network traffic is not as simple

7

12/11/20

Packet Representation - Requirements

8

12/11/20

Packet Representation - Completeness

• Complete: each feature is represented for every packet
- Every field in each packet must be able to be included in the

representation

- Our intuition is that the models can determine which features are
important for a given problem without human guidance

9

IPv4
20 - 60 Bytes

TCP
20 - 60 Bytes

UDP
8 Bytes

Payload
 n bytes

IPv4
20 - 60 Bytes

Payload
 n bytes

Packet 1

Packet 2

12/11/20

Packet Representation - Constant Size Per
Problem

• Complete: each feature is represented for every packet

• Constant Size Per Problem: the size of the representation is the
same for each packet
- Requirement for many machine learning techniques

10

IPv4
20 - 60 Bytes

TCP
20 - 60 Bytes

UDP
8 Bytes

Payload
 n bytes

IPv4
20 - 60 Bytes

Payload
 n bytes

Packet 1

Packet 2

12/11/20

Packet Representation - Semantic
• Semantic view involves packets broken into headers

• Encode each header field as a feature

• Constant size

11

12/11/20

Packet Representation - Semantic
• Problem - Loses the ordering of options!

- Example - TCP Options

• Problem - How do we represent less structured parts of the packet?
- Example: Payloads can’t really be represented numerically

• Problem -Normalization requires multiple passes of the data

12

12/11/20

Packet Representation -Inherently Normalized

• Complete: each feature is represented for every packet

• Constant size per problem: the size of the representation is the
same for each packet

• Inherently Normalized: each feature ranges between 0 and 1

13

12/11/20

Packet Representation - Naive Binary
• Turn classic semantic view of packets on its head

- think of packets as a collection of bits

• Complete - each bit can be represented

• Inherently Normalized - each feature represented between 0 and 1

14

12/11/20

Packet Representation - Naive Binary

• Problem! - different bits (features) in different packets can have
different meanings

15

12/11/20

Packet Representation -Naive Binary

• Even worse when we have different types of packets…

16

12/11/20

Packet Representation - Alignment
• Complete: each feature is represented for every packet

• Constant size: the size of the representation is the same for each
packet

• Inherently Normalized: each feature ranges between 0 and 1

• Aligned: every location in the representation has the same meaning
across all packets
- Encodes semantic structure
- Allows for interpretability

17

12/11/20

Packet Representation - nPrint

18

12/11/20

New Bottleneck

19

2. Gather Network Traffic

1. Hypothesize Classification Problem

3. Hand Engineer Features Predictive of Task

4. Train Model using Features

Bulk of Time now spent here:
Can we remove this step?

12/11/20

Training Models
• Previous work (including ours):

- Pick your favorite model(s)
- Write code to search some hyperparameters for that model
- Choose the best one in your search space

• AutoML
- Do the following in a more principled manner:

- Model selection
- Feature selection
- Hyperparameter search

20

12/11/20

AutoGluon AutoML
• Allow state-of-the-art AutoML to perform all model optimizations

• Achieves higher performance than other tools due to model
ensembling.

• Allows us to train, optimize, and test over 50 models from 5
different base model classes

21

12/11/20

The nPrint Pipeline

22

Input
(Packets)

Model
Selection

Hyperparameter
Tuning

Data
Representation

Packet
Transformation

nPrint

Feature
Selection

AutoML

Optimized
Model

nPrintML

12/11/20

Outline
• Motivation
• Methodology
• nPrint - Active Device Fingerprinting
• nPrint - Application Identification
• Conclusions

23

12/11/20

Active Device Fingerprinting- Dataset

24

12/11/20

The nPrint Pipeline

25

Input
(Packets)

Model
Selection

Hyperparameter
Tuning

Data
Representation

Packet
Transformation

nPrint

Feature
Selection

AutoML

Optimized
Model

nPrintML

12/11/20

Active Device Fingerprinting- Gathering Traffic

• Leverage Nmap, well known and used remote device fingerprinting
tool

• Over 20 years of hand curated features and a hand-developed
heuristic to fingerprint remote devices

26

Sends 16 Probes
(13 TCP), (2 ICMP), (1 UDP)

Transform responses into hand-engineered
features curated for over 20 years.

Compare Features to Fingerprints in database
Using human-developed heuristic

12/11/20

Active Device Fingerprinting- Gathering Traffic

• Leverage Nmap, well known and used remote device fingerprinting
tool

• Over 20 years of hand curated features and a hand-developed
heuristic to fingerprint remote devices

27

Sends 16 Probes
(13 TCP), (2 ICMP), (1 UDP)

Transform responses into hand-engineered
features curated for over 20 years.

Compare Features to Fingerprints in database
Using human-developed heuristic

12/11/20

The nPrint Pipeline

28

Input
(Packets)

Model
Selection

Hyperparameter
Tuning

Data
Representation

Packet
Transformation

nPrint

Feature
Selection

AutoML

Optimized
Model

nPrintML

12/11/20

Active Device Fingerprinting- Packet
Transformation

• 21 uniquely named responses
from the sent Nmap probes

• Create fingerprint picture by
sorting the responses and
concatenating them

• Flattened version of the 2D
image to the right

29

12/11/20

Nmap - Features

30

12/11/20

The nPrint Pipeline

31

Input
(Packets)

Model
Selection

Hyperparameter
Tuning

Data
Representation

Packet
Transformation

nPrint

Feature
Selection

AutoML

Optimized
Model

nPrintML

12/11/20

Active Device Fingerprinting-
Outperforming Nmap

32

12/11/20

Active Device Fingerprinting- Feature
Importance

• Interpretable machine learning

• Automatically learns features encoded
into device fingerprinting tools
- IP TTL
- TCP options, window size

33

12/11/20

Outline
• Motivation
• Methodology
• nPrint - Active Device Fingerprinting
• nPrint - Application Identification
• Conclusions

34

12/11/20

Application Identification - Dataset
• Collection of ~7000 dTLS handshakes in an effort to identify

Snowflake, a new pluggable Transport in Tor

• Manual feature engineering leads to 99% accuracy on just the
application. Can we match this with the nPrint pipeline on a harder
problem?

35

12/11/20

Application Identification - Performance

• nPrint can automatically detect features in a noisy environment

• nPrint performs well across models and trains quickly

36

12/11/20

Go try it!
• nPrint is publicly available

- Ethernet, IPv4, fixed IPv6 headers, UDP, TCP, ICMP, payloads
- Relative timestamps
- Absolute timestamps
- Formats: live capture, PCAPs, CSV scan data (Zmap)

• nPrint runs in a variety of environments
- ~300KB memory footprint
- Roughly zero loss on 10 GbE university link with pf_ring

• nPrintML is publicly available
- Combines nPrint and AutoGluon
- Application Identification case study:

• “nprintml —pcap-dir pcaps/ -L labels.csv -a pcap -4 -u -p 10”
- Passive OS detection case study:

• “nprintml -P traffic.pcap -L labels.csv -a index -4 -t”

37

12/11/20

Conclusions
• Introduce nPrint, a standard data representation for network

traffic analysis problems

• Remove human driven feature engineering step from typical
machine learning workflow for network traffic classification
problems

• Show better performance than widely used device and OS
fingerprinting tools

38

12/11/20

References
1. Rimmer, Vera, et al. "Automated website fingerprinting through deep learning." 25th Annual Network &

Distributed System Security Symposium. NDSS, 2018
2. Oh, Se Eun, Saikrishna Sunkam, and Nicholas Hopper. "p1-FP: Extraction, Classification, and Prediction of

Website Fingerprints with Deep Learning." Proceedings on Privacy Enhancing Technologies 2019.3 (2019):
191-209.

3. https://skminhaj.wordpress.com/2016/02/15/tcp-segment-vs-udp-datagram-header-format/
4. https://arxiv.org/pdf/2006.13086.pdf
5. https://www.shodan.io/
6. Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani, “Toward Generating a New Intrusion

Detection Dataset and Intrusion Traffic Characterization”, 4th International Conference on Information
Systems Security and Privacy (ICISSP), Portugal, January 2018

39

https://skminhaj.wordpress.com/2016/02/15/tcp-segment-vs-udp-datagram-header-format/
https://arxiv.org/pdf/2006.13086.pdf
https://www.shodan.io/

