12/11/20

nPrint:
Standard Packet-level
Network Traffic Analysis

nprint.github.io/nprint/

Jordan Holland, Paul Schmitt, Nick Feamster, Prateek Mittal

Overview

- Introduce nPrint, a standard data representation for network
traffic analysis problems

- Remove human driven feature engineering step from the typical
machine learning workflow for a class of network traffic
classification problems

- Show equivalent or better performance than widely used device and
Passive OS Detection tools in passive fingerprinting (pot), active
fingerprinting (Nmap), and application identification

12/11/20

Machine Learning in Networking

» Device fingerprinting

« Passive OS Detection

- Website fingerprinting
- Protocol fingerprinting

- Application identification

12/11/20

Machine Learning in Networking

1. Hypothesize Classification Problem
4. Train Model using Features 2. Gather Network Traffic

e

3. Hand Engineer Features Predictive of Task

12/11/20

Machine Learning in Networking

1. Hypothesize Classification Problem
4. Train Model using Features 2. Gather Network Traffic

{:C?} Bulk of Time spent here:
Can we remove this step?

3. Hand Engineer Features Predictive of Task

12/11/20

Outline

+ Motivation

 Methodology

 nPrint - Active Device Fingerprinting
- nPrint - Application Identification

» Conclusions

12/11/20

Inspiration

- Inspiration - deep learning techniques perform well with problems
related to image classification, where pictures have a standard
representation of values
- Related work shows deep learning techniques effective in website

fingerprinting for Tor (1,2

 Problem! Outside of Tor, network traffic is not as simple

12/11/20

12/11/20

Packet Representation - Requirements

Packet Representation - Completeness

Complete: each feature is represented for every packet
— Every field in each packet must be able to be included in the

representation

— Our intuition is that the models can determine which features are
important for a given problem without human guidance

Packet 1

IPv4 TCP Payload
20 - 60 Bytes 20 - 60 Bytes n bytes

Packet 2

IPv4 UDP Payload
20 - 60 Bytes 8 Bytes n bytes

12/11/20

Packet Representation - Constant Size Per
Problem

- Complete: each feature is represented for every packet

- Constant Size Per Problem: the size of the representation is the
same for each packet
- Requirement for many machine learning techniques

Packet 1

IPv4 TCP Payload
20 - 60 Bytes 20 - 60 Bytes n bytes

Packet 2

IPv4 UDP Payload
20 - 60 Bytes 8 Bytes n bytes

12/11/20

Packet Representation - Semantic

+ Semantic view involves packets broken into headers
- Encode each header field as a feature

o Constant size

Semantic Representation: (IP / TCP) Packet

IP IP IP TCP TCP
Verison IHL Source Port

L 5 80 ?

Payload

12/11/20

Packet Representation - Semantic

» Problem - Loses the ordering of options!
- Example - TCP Options

. Problem - How do we represent less structured parts of the packet?
— Example: Payloads can’t really be represented numerically

- Problem -Normalization requires multiple passes of the data

Semantic Representation: (IP / TCP) Packet

IP IP IP TCP TCP
Verison IHL Source Port

L 5 80 ?

Payload

12/11/20

12/11/20

Packet Representation -Inherently Normalized

- Complete: each feature is represented for every packet

« Constant size per problem: the size of the representation is the
same for each packet

« Inherently Normalized: each feature ranges between 0 and 1

13

12/11/20

Packet Representation - Naive Binary

 Turn classic semantic view of packets on its head
— think of packets as a collection of bits

« Complete - each bit can be represented

» Inherently Normalized - each feature represented between 0 and 1

Semantic Representation: (TCP / IP) Packet

IP IP IP IP TCP TCP TCP
Verison [HL Options Source Port Options

L 5 ? 80 ? ?

Payload

Naive Binary Representation: (TCP / IP) Packet

IP IP Options TCP TCP OptionsPayload
Bit1 Bit1 Bit1 Bit1 Bit1
»Ofl 070 010‘1|.........‘...‘01110000000001010000............11001011

14

12/11/20

Packet Representation - Naive Binary

. Problem! - different bits (features) in different packets can have
different meanings

Naive Binary Representation: (TCP / IP) Packet

IP IP Options TCP TCP OptionsPayload
Bit 1 Bit 1 Bit 1 Bit 1 Bit 1
0_1A0A0A0_1-0hl"'ﬁ"_'"y"loAlA1A1_O olojofo|o|o|o(0|1|0|1|0O|O|O|O]|... |...{2 |2 |O|O|2|O|21]12

Naive Binary Representation: (TCP / IP) Packet: No Options

IP TCP Payload
Bit1 Bit1 Bit1
OlOAOO10}1!.........‘...000OOOOOO1010000............101 1

15

12/11/20

Packet Representation -Naive Binary

- Even worse when we have different types of packets...

Naive Binary Representation: (TCP / IP) Packet

IP IP Options TCP TCP OptionsPayload
Bit1 Bit1 Bit1 Bit 1 Bit1
0(1|10|0(0|1|0(1]...]...|... ..[0]11(1(12|0{0(O0|O0(O0|0|0|O0(0|1|0(2]|0(O0|0|0|..c|eec|eee]ee.|2]|1(O(0O0|1|0|1]|1

Naive Binary Representation: (TCP / IP) Packet: No Options

IP TCP Payload
Bit1 Bit1 Bit1
o|1|0(o|o|1(0]|1]... ...]... ..l0|lo|o|(o|O0|O|O|O|O(1|O|1(0|O|O|O]...|...|...|...]2|O]|2 |12

Naive Binary Representation: (UDP / IP) Packet

IP UDP Payload
Bit 1 Bit 1 Bit 1
o|i1(o|o|o|1|0(1]... ...]... ..|1/0/0(1/0|0|1|0]|......|...|c..|2|O 2|2

16

12/11/20

Packet Representation - Alignment

- Complete: each feature is represented for every packet

« Constant size: the size of the representation is the same for each

packet

« Inherently Normalized: each feature ranges between 0 and 1

« Aligned: every location in the representation has the same meaning

across all packets
- Encodes semantic structure
- Allows for interpretability

17

Packet Representation - nPrint

nPrint
IPv4 TCP UDP ICMP Payload
480 Features 480 Features 64 Features 64 Features n Features
Maximum Size Maximum Size Size of Size of User Defined
of IPv4 Header of TCP Header UDP Header ICMP Header Number of Butes
(60 Bytes) (60 Bytes) (8 Bytes) (8 Bytes) yt
nPrint (TCP / IP) Packet
0‘1 0 _0_0;1 }0_1 Il ;1 ‘o 101010101lee-1-1-1-1-1-1-1]-1-1|-1-1/-1}-1/-1 1[1 [0[]‘[
nPrint (UDP / IP) Packet
0 h ;0 :o _0;1 ;o 1]1 ;1 ‘...;...;...‘...‘-1-—1-1-1-1-1-1-1-1-1-1-1-1—-1 011 ..uoeel=1f-1-1)-1-1-1]-1/1 |1 loll|l

12/11/20

New Bottleneck

1. Hypothesize Classification Problem

Bulk of Time now spent here:
Can we remove this step?
4. Train MOdEI using Features 2. Gather Network Traffic

\@?} %

3. Hand Engineer Features Predictive of Task

12/11/20

19

12/11/20

Training Models

- Previous work (including ours):
— Pick your favorite model(s)
— Write code to search some hyperparameters for that model
— Choose the best one in your search space

« AutoML
— Do the following in a more principled manner:
- Model selection
- Feature selection
- Hyperparameter search

20

12/11/20

AutoGluon AutoML

. Allow state-of-the-art AutoML to perform all model optimizations

- Achieves higher performance than other tools due to model

ensembling.

- Allows us to train, optimize, and test over 50 models from 5

different base model classes

21

12/11/20

The nPrint Pipeline

Input
(Packets)

—»@—»

|
Model
Selection

4 Feature
Selection

Packet Data Hyperparameter
Transformation Representation Tuning
nPrint AutoML
nPrintML

— &

Optimized
Model

22

12/11/20

Outline

+ Motivation

» Methodology

 nPrint - Active Device Fingerprinting
- nPrint - Application Identification

» Conclusions

23

12/11/20

Active Device Fingerprinting- Dataset

Vendor Device Type Labeled Devices
Adtran Network Device 1,449
Avtech IoT Camera 2,152
AXxis IoT Camera 2,653
Chromecast IoT Streaming 2,872
Cisco Network Device 1,451
Dell Network Device 1,449
H3C Network Device 1,380
Huawei Network Device 1,409
Juniper Network Device 1,445
Lancom Network Device 1,426
Miktrotik Network Device 1,358
NEC Network Device 1,450
Roku IoT Streaming 2,403
Ubiquoss Network Device 1,476
ZTE Network Device 1,425

24

12/11/20

The nPrint Pipeline

Input
(Packets)

—> @ —> I:I —> <o e

4 Feature
Selection

Packet Data Hyperparameter
Transformation Representation Tuning
nPrint AutoML
nPrintML

— &

Optimized
Model

25

Active Device Fingerprinting- Gathering Traffic

- Leverage Nmap, well known and used remote device fingerprinting
tool

- Over 20 years of hand curated features and a hand-developed

heuristic to fingerprint remote devices
" - @ — BE
A%

Sends 16 Probes Transform responses into hand-engineered Compare Features to Fingerprints in database
(13 TCP), (2 ICMP), (1 UDP) features curated for over 20 years. Using human-developed heuristic

Dﬂﬂ(
III

12/11/20

26

Active Device Fingerprinting- Gathering Traffic

- Leverage Nmap, well known and used remote device fingerprinting
tool

- Over 20 years of hand curated features and a hand-developed
heuristic to fingerprint remote devices

Sends 16 Probes Transform responses into hand-engineered Compare Features to Fingerprints in database
(13 TCP), (2 ICMP), (1 UDP) features curated for over 20 years. Using human-developed heuristic

12/11/20

27

12/11/20

The nPrint Pipeline

Input
(Packets)

&) —

Packet
Transformation

nPrint

Data
Representation

nPrintML

K Feature
A Selection

Model
Selection
Hyperparameter
Tuning

—l

AutoML

— &

Optimized
Model

2.8

Active Device Fingerprinting- Packet
Transformation

- 21 uniquely named responses
from the sent Nmap probes

- Create fingerprint picture by

sorting the responses and UDP Response
concatenating them ICMP Response 1
ICMP Response 2 21 Rows
] TCP Response 1
« Flattened version of the 2D Response ..

image to the right

12/11/20

12/11/20

Nmap - Features

Test Name Summary Nmap Weight
Explicit Congestion Notification TCP Explicit Congestion control flag. 100
ICMP Response Code ICMP Response Code. 100
Integrity of returned probe IP Checksum Valid checksum in an ICMP port unreachable. 100
Integrity of returned probe UDP Checksum UDP header checksum received match. 100
[P ID Sequence Generation Algorithm Algorithm for IP ID. 100
IP Total Length Total length of packet. 100
Responsiveness Target responded to a given probe. 100
Returned probe IP ID value I[P ID value. 100
Returned Probe IP Total Length [P Length of an ICMP port unreachable. 100
TCP Timestamp Option Algorithm TCP timestamp option algorithm. 100
Unused Port unreachable Field Nonzero Last 4 bytes of ICMP port unreachable message not zero. 100
Shared IP ID Sequence Boolean Shared IP ID Sequence between TCP and ICMP. 80
TCP ISN Greatest Common Divisor Smallest TCP ISN increment. 75
Don’t Fragment ICMP [P Don’t Fragment bit for ICMP probes. 40
TCP Flags TCP flags. 30
TCP ISN Counter Rate Average rate of increase for the TCP ISN. 25
TCP ISN Sequence Predictability Index Variability in the TCP ISN. 25
IP Don’t Fragment Bit IP Don’t Fragment bit. 20
TCP Acknowledgment Number TCP acknowledgment number. 20
TCP Miscellaneous Quirks TCP implementations, e.g, reserved field in TCP header. 20
TCP Options Test TCP header options, preserving order. 20
TCP Reset Data Checksum Checksum of data in TCP reset packet. 20
TCP Sequence Number TCP sequence number. 20
IP Initial Time-To-Live [P initial time-to-live. 15
TCP Initial Window Size TCP window size. 15

30

12/11/20

The nPrint Pipeline

Input
(Packets)

—»@—»

Feature
Selection

Model
Selection

Packet Data Hyperparameter
Transformation Representation Tuning
nPrint AutoML
nPrintML

— &

Optimized
Model

31

12/11/20

Precision

Precision

1.0

0.8 -

0.6

0.4 -

0.2 A

0.0

1.0

0.8 1

0.6 -

0.4 5

0.2

0.0

Active Devi
Outperforming Nmap

— Adtran - mean AP: 1.00 = 0.000
- Avtech - mean AP: 0.87 = 0.000
« Axis - mean AP: 0.93 + 0.000

« Dell - mean AP: 0.85 + 0.000

« Lancom - mean AP: 0.99 + 0.000
+ Mikrotik - mean AP: 0.88 + 0.000

- Ubiquoss - mean AP: 0.99 = 0.000
- Zte - mean AP: 0.99 = 0.000

Chromecast - mean AP: 1.00 + 0.000
Cisco - mean AP: 0.97 + 0.000

H3c - mean AP: 0.95 + 0.000
Huawei - mean AP: 0.94 = 0.000
Juniper - mean AP: 0.99 + 0.000

Nec - mean AP: 1.00 = 0.000
Roku - mean AP: 0.92 + 0.000

0.2 0.4 0.6
Recall

(@) Nmap PR

-

« Avtech - mean AP: 0.95 + 0.000 . .‘._ \
« AXis - mean AP: 0.98 + 0.000 :

- Dell - mean AP: 0.99 + 0.000
+ Mikrotik - mean AP: 0.91 = 0.000

|
I
!
- Lancom - mean AP: 0.99 =+ 0.000 l
|
I
I

+ Ubiquoss - mean AP: 0.99 = 0.000 .
. Zte - mean AP: 0.99 + 0.000 L.

Adtran - mean AP: 1.00 + 0.000 \'\ =\

Chromecast - mean AP: 1.00 + 0.000 \ <
Cisco - mean AP: 0.99 * 0.000 \:

H3c - mean AP: 0.96 = 0.000
Huawei - mean AP: 0.95 = 0.000
Juniper - mean AP: 0.99 + 0.000

Nec - mean AP: 1.00 = 0.000
Roku - mean AP: 0.99 + 0.000

1 L] |]

0.2 0.4 0.6 0.8 1.0
Recall

(b) nPrint PR

ce Fingerprinting-

Representation Balanced ROC AUC Fl
Accuracy
nPrint 95.4 99.7 955
Nmap 92.7 99.3 929

32

12/11/20

Active Device Fingerprinting- Feature
Importance

- Interpretable machine learning

- Automatically learns features encoded
into device fingerprinting tools
- IPTTL

- TCP options, window size

C
Offset Rsvd NCEUAPRSF B BWindow Sige
Checksum Urgent Pointer

(b) TCP

(c) ICMP

33

12/11/20

Outline

+ Motivation

» Methodology

 nPrint - Active Device Fingerprinting
- nPrint - Application Identification

» Conclusions

34

12/11/20

Application Identification - Dataset

. Collection of ~7000 dTLS handshakes in an effort to identity
Snowflake, a new pluggable Transport in Tor

- Manual feature engineering leads to 99% accuracy on just the
application. Can we match this with the nPrint pipeline on a harder
problem?

Application Handshakes

Browser Snowflake Facebook Google Discord

Firefox 991 796 1000 992
Chrome 0 784 995 997

35

Application Identification - Performance

- nPrint can automatically detect features in a noisy environment

- nPrint performs well across models and trains quickly

Fit Time Total

Model Architecture Inference Time F1
(Seconds)
(Seconds)

Random Forest 3.69 0.37 99.8

ExtraTrees 3.89 043 999

KNeighbors 3.90 895 96.0

LightGBM 5.21 0.15 998

Catboost 9.00 0.38 99.7

Weighted Ensemble 46.1 045 999

Neural Network 85.58 299 997
(b) UDP

B B B =~ _ I

(¢c) DTLS

12/11/20

12/11/20

Go try it!

« nPrint is publicly available
- Ethernet, IPv4, fixed IPv6 headers, UDP, TCP, ICMP, payloads
- Relative timestamps
- Absolute timestamps
- Formats: live capture, PCAPs, CSV scan data (Zmap)

e nPrint runs in a variety of environments
- ~300KB memory footprint
- Roughly zero loss on 10 GbE university link with pf_ ring

« nPrintML is publicly available
- Combines nPrint and AutoGluon
— Application Identification case study:
« “nprintml —pcap-dir pcaps/ -L labels.csv -a pcap -4 -u -p 10”

- Passive OS detection case study:
« “nprintml -P traffic.pcap -L labels.csv -a index -4 -t”

37

12/11/20

Conclusions

- Introduce nPrint, a standard data representation for network
traffic analysis problems

- Remove human driven feature engineering step from typical
machine learning workflow for network traffic classification

problems

- Show better performance than widely used device and OS
fingerprinting tools

12/11/20

References

1. Rimmer, Vera, et al. "Automated website fingerprinting through deep learning." 25th Annual Network &
Distributed System Security Symposium. NDSS, 2018

2. Oh, Se Eun, Saikrishna Sunkam, and Nicholas Hopper. "p1-FP: Extraction, Classification, and Prediction of
Website Fingerprints with Deep Learning." Proceedings on Privacy Enhancing Technologies 2019.3 (2019):
191-2009.

3. https://skminhaj.wordpress.com/2016/02/15/tcp-segment-vs-udp-datagram-header-format/

4. https://arxiv.org/pdf/2006.13086.pdf

5. https://www.shodan.io/

6. Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani, “Toward Generating a New Intrusion
Detection Dataset and Intrusion Traffic Characterization”, 4th International Conference on Information
Systems Security and Privacy (ICISSP), Portugal, January 2018

39

https://skminhaj.wordpress.com/2016/02/15/tcp-segment-vs-udp-datagram-header-format/
https://arxiv.org/pdf/2006.13086.pdf
https://www.shodan.io/

