
A Brief History of  
Router Architecture

Tony Li



Disclaimer

The goal of this talk is education and perspective — 
not dumping on anyone, innocent or guilty. 
This is all based on non-ECC protected neurons, 

and details are blithely ignored. Omissions and 
errors are all mine.



In the beginning, there was a bus …

NIC NIC NIC MemoryCPU



… and it sucked

Bus and CPU are centralized resources that scale 
linearly 

Cost of the bus interface is proportional to the bus 
speed and the bus speed is the aggregate for the 
entire system 

Bigger box? More expensive NICs! 

We need a scalable architecture



If one bus is good…

MemoryCPUMemory ALU NIC

NIC NIC NIC



… two should suck a little less

A second, faster bus gives more bandwidth 
An ALU (DSP) gives a few more cycles per packet 
But it still doesn’t scale



What if we add hardware acceleration?

MemoryCPUMemory ALU NIC

NIC NIC NIC

FPGA



Better, but it still sucks
Proof-of-concept that you can do packet forwarding in 
hardware. (So we abandoned that direction.) 
But the IP address lookup is NOT the only bottleneck, so 
adding lookup hardware only helps a little. 
The real issue is centralized bandwidth. We need distributed 
bandwidth and processing.



And then, the web…

Carriers buy up NSFnet regionals 
Real Money starts to flow — time to get serious 
Everyone and their brother wants to build a router 
ASICs become credible 
Creativity blossoms



The scheduled crossbar
Output 1

Output 2

Output 3

Output 4

Input 1 Input 2 Input 3 Input 4



Distributed bandwidth, but it still sucks

Scheduling is hard. Contention for outputs means that the 
switch lanes have to be much faster than the outputs. 
Worse, because you can’t always drain the inputs, you end 
up with Head-Of-Line-Blocking (HOLB). Throughput suffers. 
Inputs need a queue per output. 
And it doesn’t scale.



What about a torus?



Donuts make lousy routers

Non-uniform bandwidth means that the fabric can congest 
depending on the traffic pattern. 
Card removal causes more bandwidth issues. 

Bandwidth needs to be distributed and uniform 



Distributed cell memory and a full mesh?
NIC

NIC

NIC

NIC NIC

NIC



That still sucks…

When a card is hotswapped, all packets are lost. 
Bandwidth of system is a fixed multiple of the bandwidth of 
the card. 
That’s still not scalable.



Centralized shared memory?
NIC

NIC

NIC

NIC NIC

NIC

Memory



Better, but still sucks

Lots of nice properties, but 
It can’t be just one memory, need many banks 
Need multiple memory controllers 
Limited by controller bandwidth 

It still doesn’t scale



Cell based Clos networks

Output 1

Output 2

Output 3

Output 4

Input 1

Input 2

Input 3

Input 4

Cell 
Switch

Cell 
Switch

Cell 
Switch

Cell 
Switch

Cell 
Switch

Cell 
Switch



Folded Clos networks

NIC 1

NIC 2

NIC 3

NIC 4

Cell 
Switch

Cell 
Switch

Cell 
Switch

Cell 
Switch



That sucks less

Bandwidth is distributed, uniform, and redundant 
But scalability is still limited: 

Inputs need a queue per output 
Cell addressing is finite: fabric can only be so big 
Cell fabric is proprietary and fixed 
Technology upgrades are difficult to roll-in 

Vendor lock-in or chipset lock-in are issues



Supernode architecture
Same Clos topology 

Industry standard links 
(Ethernet) and switches 

Easy incremental upgrades 

True vendor independence 

Packet, not cell based, so needs 
a bit more internal bandwidth 

Fabric scales with more stages 
or more width

Router 1

Router 2

Router 3

Router 4

Packet 
Switch

Packet 
Switch

Packet 
Switch

Packet 
Switch



Supernode software issues

Needs to look like a single router on Control & 
Management planes 
Work in progress: 

IGP abstraction - Supernodes looks like a single 
IGP node 
Management plane abstraction - Supernode 

looks like a single node to top level management


