First Open Source DDoS Protection System

Michel Machado Cody Doucette Qiaobin Fu John W. Byers

NANOG 82 -- June 14th, 2021
Motivation -- Relevance of DDoS attacks

Largest known DDoS attacks

- ● bits/second
- ▲ packets/second
- ▲ requests/second

Google

- 600 krps
- 1.5 Mrps
- 309 Gbps
- 2.72 Mrps
- 230 Mpps
- 445 Mpps
- 623 Gbps
- 2.54 Tbps
- 652 Mpps
- 6 Mrps

2010 2015 2020
Motivation -- Largest DDoS attacks of 2020

<table>
<thead>
<tr>
<th>Who</th>
<th>Peak</th>
<th>When</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWS</td>
<td>2.3 Tbps</td>
<td>February</td>
</tr>
<tr>
<td>Akamai</td>
<td>809 Mpps</td>
<td>June</td>
</tr>
<tr>
<td>Cloudflare</td>
<td>754 Mpps</td>
<td>June</td>
</tr>
</tbody>
</table>

809 Mpps is the newest packet-rate record
2.3 Tbps is close to the bandwidth record: 2.54 Tbps in Sep 2017
Motivation -- Why Gatekeeper?

Unparalleled multi-vector protection
⇒ All flows are monitored and all filters are active;
 alternative solutions have limited filtering capacity;
 See paper "The Catch-22 Attack" for details

Scalable
⇒ 1 Tbps deployment underway at Mail.ru

Mitigation in seconds
⇒ More than 80% of attacks last ≤ 4 min according to Kaspersky;
 There is not much time for human intervention
✓ Motivation

How Gatekeeper works

How to write a destination policy

Mitigating a SYN flood

Conclusion
Gatekeeper’s components

Vantage points: well-provisioned and geographically distributed locations
Gatekeeper’s components

Vantage points:
well-provisioned and
geographically distributed
locations

Requirements:
● computing capacity
● cheap ingress bandwidth
● BGP peering
● private links to the
protected AS

CLIENT

SERVER

Dest. AS

VP

VP
Gatekeeper’s components

Vantage points: well-provisioned and geographically distributed locations

Requirements:
- computing capacity
- cheap ingress bandwidth
- BGP peering
- private links to the protected AS

Examples:
- Internet exchanges
- Peering link
- Some cloud providers
Gatekeeper’s components

Vantage points: well-provisioned and geographically distributed locations

Requirements:
- computing capacity
- cheap ingress bandwidth
- BGP peering
- private links to the protected AS

Examples:
- Internet exchanges
- Peering link
- Some cloud providers
Gatekeeper’s components

Vantage points: well-provisioned and geographically distributed locations

Requirements:
- computing capacity
- cheap ingress bandwidth
- BGP peering
- private links to the protected AS

Examples:
- Internet exchanges
- Peering link
- Some cloud providers
Gatekeeper’s components

- **Gatekeeper servers:** upstream policy enforcement

 Responsibilities:
 - Forwarding requests (new flows)
 - Dropping or rate-limiting according to per-flow policy enforcement program
 - Encapsulating

Path to closest VP

Gatekeeper servers:

- BPF
- BPF
- BPF
- BPF

CLIENT

SERVER

Dest. AS
Gatekeeper’s components

Gatekeeper servers: upstream policy enforcement

Responsibilities:
- Forwarding requests (new flows)
- Dropping or rate-limiting according to per-flow policy enforcement program
- Encapsulating
Gatekeeper’s components

Grantor servers: centralized policy decision making

Responsibilities:
- Making policy decisions about requests and installing those decisions at Gatekeeper
- Decapsulating and sending to destination server
1. Packets from clients are forwarded to the closest VPs
2. Gatekeeper servers forward packets of new flows to Grantor servers, or run BPF programs to decide what to do
3. Grantor servers run a policy to map flows to BPF programs, and forward granted packets to destinations
4. Grantor servers notify Gatekeeper servers of all policy decisions
5. Gatekeeper servers enforce the police decisions
Quick summary

1. Packets from clients are forwarded to the closest VPs
2. Gatekeeper servers forward packets of new flows to Grantor servers, or run BPF programs to decide what to do
3. Grantor servers run a policy to map flows to BPF programs, and forward granted packets to destinations
4. Grantor servers notify Gatekeeper servers of all policy decisions
5. Gatekeeper servers enforce the police decisions
Motivation

How Gatekeeper works

How to write a destination policy

Mitigating a SYN flood

Conclusion
Step 1: identify ALL your network profiles

A profile may apply:
- to a single server, a group of servers, or
- to blocks of IP addresses

Example of a profile: outgoing email servers
- No listening sockets
- Very small ingress traffic footprints

Sources: config files, production servers, docs

Step 1: Network profiles ➔ Step 2: BPF programs ➔ Step 3: Lua Policy
Step 2: write an BPF program for each profile

Classify packets into one of these bins:

- **Primary**: main purpose of the service
- **Secondary**: needed packets (e.g. TCP SYN, ICMP)
- **Unwanted**: please guess :-)

Enforce primary bandwidth limit **before** classification
Enforce secondary bandwidth limit **after** classification on secondary packets

Step 1: Network profiles ➔ Step 2: BPF programs ➔ Step 3: Lua Policy
Step 3: map flows to your BPF programs

Just classify flows using the destination IP address

Example: 10.99.99.128/25 are outgoing email servers
This information is a byproduct of Step 1

Grantor servers run this part of the policy (Lua policy)
Step 3: map flows to your BPF programs (bonus)

Classify source IP addresses too!

- Reject bogons, abusers, malware
- Tune bandwidth to partners, countries, end users
- Return different profiles to CDNs, crawlers, offices

Manage all your IP ranges with Drib:
https://github.com/andrenth/drib

Step 1: Network profiles ➔ Step 2: BPF programs ➔ Step 3: Lua Policy
✓ Motivation
✓ How Gatekeeper works
✓ How to write a destination policy
 Mitigating a SYN flood
Conclusion
A modest testbed on AWS

2x Packet generators forging 16K source IP addresses
1x Legit client uploading a 20KB file 50 times

1x Gatekeeper server
1x Router

1x Grantor server
1x Destination web server
Blind limits per flow are effective.
Secondary limits thwart SYN floods
✓ Motivation
✓ How Gatekeeper works
✓ How to write a destination policy
✓ Mitigating a SYN flood

Conclusion
Some future work

Supporting 100 Gbps NICs at line speed
⇒ Cheaper deployments

Supporting load balancing in policies
⇒ Better return on investment

Flow orchestration
⇒ Insurance for endgame
Unparalleled multi-vector protection

Mitigation in seconds

Scalable, open source, and ready for deployment

Impactful features in store for the future