IPv6: More than Meets the Eye

Nick Russo, Technical Leader Cisco Systems http://njrusmc.net

> NANOG 82 June 14-16, 2021

Stuff Everyone Knows

- IPv6 is a lot bigger than IPv4
- IPv6 packets cannot be fragmented in transit
- ICMPv6 replaces ARP, IGMP, and IRDP
- Stateful NAT66 and IPv6 MSDP don't exist

Things IPv4 Can't Do Easily

- Signal hop-limit (TTL) and MTU to clients
- Statelessly generate unique addresses
- Statelessly communicate non-address information
- Dynamically allocate entire prefixes
- Embed in-address information

Architecture 1: Unlimited Scale WAN

Unlimited Scale WAN Overview

- Requirements:
 - Any-to-any at scale
 - Minimal OAM
 - Easy client onboarding
 - Optional encryption
 - IPv4 interworking
- Solution
 - 6rd overlay / GETVPN
 - Stateless DHCPv6
 - SLAAC

How It Works

Securing the Transport

Architecture 2: Low-touch Mobile Sites

Low-touch Mobile Sites Overview

- Requirements:
 - Hub-to-spoke at scale
 - Multiple transports
 - Fully dynamic sites
 - Top-down automation
- Solution
 - IPv6 BGP over DMVPN
 - DHCPv6 PD
 - Stateless DHCPv6
 - SLAAC

Obtaining an IPv6 Prefix

- Site requests prefix
- Server issues prefixes
 - Stateful mapping
- Can include options:
 - Domain name
 - DNS server
 - SNTP servers

Upstream BGP Routing

- Spokes initiate to hubs
- Advertise PD prefixes
- Receive default route
- Improves resilience:
 - Allows multi-link sites
 - Allows multi-transport

What About Automation?

- On-box:
 - Autoconfig hostname
 - Autoconfig EUI-64 /128
 - Send /128 via BGP to hub
- Centralized:
 - Parse /128 from router
 - Build /128 from MACs
 - Do whatever afterwards!

```
resp = conn.send_command("show bgp all", use_genie=True)
v6_rte = resp["address_family"]["ipv6 unicast"]["routes"]
```

```
# Initialize Ansible YAML inventory dictionary
ansible_inv = {"all": {"children": {"remotes": {"hosts": {}}}}
```

```
# Iterate over all collected BGP prefixes
for index, prefix in enumerate(v6_rte.keys()):
```

```
# Create an IPv6 network representing the specific prefix
prefix_net = IPv6Network(prefix.lower())
```

```
# Test for subnet containment and for /128 mask
if prefix_net.subnet_of(mgmt_net) and prefix.endswith("/128"):
```


Some Samples ... It's Cool!

ans_inv_from_eui64.py

```
all:
children:
remotes:
hosts:
node_1:
ansible_host: "2001:db8::a2bb:ccff:fe00:0300"
original_mac: "a0bbcc000300"
node_3:
ansible_host: "2001:db8::a0bb:ccff:fe00:0300"
original_mac: "a2bbcc000300"
```

ans_inv_from_bgp.py

all:

children:

remotes:

hosts: node_1:

ansible_host: "2001:db8:aaaa:aaaa::1"
node 2:

ansible_host: "2001:db8:aaaa:aaaa::2"
node_3:

ansible_host: "2001:db8:aaaa:aaaa::3"

- - -

Thank you

Nick Russo http://njrusmc.net Technical Leader, Cisco Systems

References

Architecture 1: Unlimited Scale WAN: http://njrusmc.net/pub/6rd_getvpn.pdf Architecture 2: Low-Touch Mobile Sites http://njrusmc.net/pub/csfc_macp.pdf Code Samples: https://github.com/nickrusso42518/ipv6-tools

