
The Evolution of Network Automation at
Roblox

Mayuresh Gaitonde | Network Reliability Engineer

Agenda

- Background
- Initial automation framework
- Challenges
- Automation 2.0
- Takeaways / Learnings
- Q&A

What is Roblox

- Massively multiplayer online game creation
platform

- Gaming + social
- Core audience is children aged 9-12
- Over 100 million monthly active players

Background

- Single Data Center in Chicago
- Legacy hardware and outdated network design
- Player growth
- SOS !

Roblox Cloud

- New US-Central Datacenter with in house compute
- Spine-leaf fabric
- 9+ new POPs with game servers
- Single-vendor
- Automation first approach

Enter the NRE team...

- Network Reliability Engineering
- Build a scalable, robust and reliable automation stack

- Automation should facilitate network growth
- Focus on network reliability

- Monitoring and alerting was the #1 priority
- Customer centric view

Source of Truth

- Netbox
- Network builder

- Populate Netbox based on user defined intent
- Declarative tool to express network intent in the form of YAML

templates
- Idempotent resource allocation engine (ASNs, Interfaces, IPs)
- Convert rendered templates into netbox objects

Monitoring and Alerting

- Priority # 1
- Collect, store, visualize
- Custom collector

- Netconf + JSON
- Based on Open Source vendor

libraries
- TSDB

- Leverage org wide data store infra
- TICK Stack
- Alerting required writing TICK

scripts
- Dashboards

- Grafana
- Syslog

Configuration Management and Device Provisioning

- Ansible
- Host + Group vars + Netbox data
- Collection of playbooks to serve

various operational needs
- Use vendor modules wherever

possible
- AWX for UI based jobs

- Device Provisioning
- Ansible playbooks for device

provisioning over console
- Used legacy console scripts from

vendors

Not exactly a bed of roses...

- Limited resources across different pods
- 2-3 member NRE team to maintain the entire stack

- Majority of time spent in KTLO
- We needed to re-think the automation stack

- Overcome challenges with current stack
- Enable self-service where possible

Challenges with SOT

- Netbox API limitations
- Config generation required making

multiple API calls
- NetBuilder v1.0 was showing its age

- Lacked a proper schema
- Lacked unit tests
- Too many templates / variations

The Solution...

- Build Custom APIs that pertain
to the business logic

- Initially maintained as a Netbox
plugin

- Network API
- Decouple business logic from SOT

- Netbuilder v2.0
- Schema based templating engine
- Redesigned the templating

schema
- Rewrote resource manager
- Slew of unit tests

Challenges with Config Management and Deployment

- Ansible’s weaknesses start showing at scale
- Too slow for our use case
- Cryptic internals make debugging hard
- Ended up writing Python modules for a lot of use cases
- Scaling issues with AWX

- Device provisioning was slow and error prone
- Console playbooks had only a 50% success rate
- Lacked any checks

The Solution...

- Nornir
- Pure Python
- Base functionality was not enough

- Built a config management and tooling
framework on top

- Collection of operational Python scripts
- Extensible, multi-vendor support
- Retained Ansible style filtering and variable

management
- Zero Touch Provisioning

- Multi vendor support
- Added pre and post provisioning checks

- Job Runner UI
- Push button device provisioning

The Common theme so far ..?

- Question the status quo !!
- Regular “Customer” feedback is critical
- v2.0 = best_of(v1.0) - worst_of(v1.0) + ...

Challenges with Alerting

- Naively sent all alerts to a Slack channel
- Hard to distinguish noise = alert fatigue
- No unified view of alerts
- Hundreds of trivial repetitive alerts
- Needed a comprehensive alert

management framework

The Solution...

- Alert Manager
- In house tool written in Go for alert

management
- Single pane of glass for all alerts
- Visualize and interact with alerts

- API driven
- Tune out the noise

- Alert aggregation and inhibition
- Plug into S.O.T

- Automatic alert suppressions
- Enabled more advanced

workflows
- Auto remediation

https://robloxtechblog.com/network-alert-management-and-automatic-fault-remediation-at-roblox-c1e99e5847d0

Challenges with Monitoring

- Storage issues with InfluxDB
- Inefficient storage engine
- Retention limits

- Writing alerts meant writing TICK scripts
- Steep learning curve
- Debugging and adding new alerts was time consuming
- Started hitting scaling limits over time

- Dashboarding required InfluxQL knowledge
- SQL-like but not quite
- Complex visualizations require trial and error

- Did not fit into our “self-service enablement” model

The Solution...

- Prometheus
- 5x Storage efficiency for our metrics, YMMV
- Easier to learn and write PromQL

- Enables other engineers to create their own dashboards and queries
- Built in alerting system using the familiar PromQL

- No separate alerting component needed

The NRE Self-Service Model

- Build frameworks, not scripts
- Plugin Driven Development
- Allow network engineers to write their own scripts, audits etc.
- Allow network engineers to create their own dashboards
- Provide UI tools to offload trivial tasks (e.g TOR provisioning)
- Look for collaboration opportunities outside Networking

Key Learnings

- Automation first approach
- Hire for automation !

- No longer a nice-to-have
- Automation adds strategic value
- Give it equal importance as your core product or SWE teams

- Iterate - done is better than perfect
- Standardize where possible

- Clean, robust automation goes hand in hand with clean, standardized network designs
- Does out-of-the-box functionality work for you ?

- Built in APIs and features may be limiting
- Be prepared to write extensions to serve your business logic

Key Learnings contd..

- Open Source is not always the right answer
- Don't fall for the number of github stars !
- Control your own destiny
- Think strategic

- Avoid one-stop-shop automation solutions
- Unless something is better than nothing

- Automation as an enabler

Thank you !

