
Introduction to
Network Automation

using Ansible
Ganesh B. Nalawade
Principal Software Engineer

Ansible Engineering
Github/IRC: ganeshrn
Twitter: @ganesh634

Agenda
• Ansible overview
• Ansible module execution Linux v/s Network host
• Ansible Collections overview
• Ansible Network Collections
• Fundamental modules
• Resource module
• Operational state management modules

• Parsing operational state to structured data
• Validating structured data against a criteria

Ansible overview

SIMPLE POWERFUL AGENTLESS

Gather Information and Audit

Configuration management

Workflow orchestration

Manage ALL IT infrastructure

Human readable automation

No special coding skills needed

Tasks executed in order

Get productive quickly

Agentless architecture

Uses OpenSSH and paramiko

No agents to exploit or update

More efficient & more secure

ANSIBLE AUTOMATION ENGINE

CMDB

USERS

INVENTORY
HOSTS

NETWORK
DEVICES

PLUGINS

CLI

MODULES

PUBLIC / PRIVATE
CLOUD

PUBLIC / PRIVATE
CLOUD

ANSIBLE PLAYBOOK

CORE NETWORK COMMUNITY

Ansible module execution

NETWORKING
DEVICES

LINUX/WINDOWS
HOSTS

Module code is
copied to the
managed node,
executed, then
removed

Module code is
executed locally
on the control
node

REMOTE EXECUTION

LOCAL EXECUTION

Ansible module execution types

Ansible module execution types (contd.)

CONTROL NODE MANAGED NETWORK DEVICES

Control Node:
Any client system (server, laptop,

VM) running Linux or Mac OSX

Managed Nodes (Inventory):
A collection of endpoints being

managed via SSH or API.

Modules:
Handles execution of remote

system commands

Inventory

Playbook

Modules

SSH

(CLI)

NETCONF

API

Network Element

Network Element

Network Element

Ansible collections
overview

● A standardized way to organize
and package Ansible content
(roles, modules, module utilities,
plugins, documentation)

● Semantic versioning

● Portable and flexible delivery

Simplified and consistent content schema

Ansible Collection

GALAXYAutomation Hub Apple App Store Google Play

iPhone Android
Ansible Automation

Platform

Content = Collections Content = Apps

● galaxy.yml: source data for the MANIFEST.json that will be part of the collection package
● README.md: “Front page” for documentation
● docs/: local documentation for the collection
● meta/: metadata files including runtime.yml (for redirection rules, compatibility, deprecation)
● playbooks/: playbook snippets

○ tasks/: holds 'task list files' for include_tasks/import_tasks usage
● plugins/: all Ansible plugins, each in its own subdir

○ modules/: module plugins (aka “modules”)
○ lookups/: lookup plugins
○ filters/: Jinja2 filter plugins
○ connection/: connection plugins required if not using default

● roles/: Ansible roles
● tests/: sanity, unit, integration tests

Collection Directory Structure

requires_ansible
provides Ansible
version
compatibility

Reference: https://docs.ansible.com/ansible/latest/user_guide/collections_using.html

https://docs.ansible.com/ansible/latest/user_guide/collections_using.html

Ansible plugin types

• modules - Ansible modules (a.ka. task plugins) are discrete unit of code that can either
run on managed host or control node and collects the return values. Example.
cli_command, cli_config)

• connection - Connection plugins allow Ansible to connect to the target hosts so it can
execute tasks on them. Ansible ships with many connection plugins, but only one can
be used per host at a time. Example. network_cli, ssh

• lookup - Lookup plugins are an Ansible-specific extension to the Jinja2 templating
language and can be used to access data from outside sources (files, databases,
key/value stores, APIs, and other services) within your playbooks. Example. file

Reference: https://docs.ansible.com/ansible/latest/plugins/plugins.html

https://docs.ansible.com/ansible/latest/plugins/plugins.html

Ansible plugin types (contd.)

• filter - Filters plugin are used mainly transform data from within playbook like transform JSON
data into YAML data, split a URL to extract the hostname so on. Example to_json, from_json,
to_yaml, from_yaml

• test - Used for data validation in playbook and is Jinja way of evaluating template expressions and
returning True or False

• inventory - Inventory plugins allow users to point at data sources to compile the inventory of hosts
that Ansible uses to target tasks Example: amazon.aws.aws_ec2

• callback - Callback plugins enable adding new behaviors to Ansible when responding to events.
• callback plugins control most of the output you see when running the playbook
• can also be used to add additional output
• integrate with other tools and marshall the events to a storage backend.

Reference: https://docs.ansible.com/ansible/latest/plugins/plugins.html

https://docs.ansible.com/ansible/latest/plugins/plugins.html

Ansible network
collections

● ansible.netcommon:
○ Platform independent plugins

■ Connection (network_cli, netconf, httpapi)
■ Filter (network, ipaddr)
■ Modules (cli_config, cli_command, netconf_get, netconf_config

etc.)

● ansible.utils:
○ Plugins to aid in the management, manipulation and visibility of data

for the Ansible playbook developer.
■ Modules (cli_parse, validate, fact_diff etc.)
■ Filter (to_path, to_xml, index_of etc.)
■ Test (network test plugins)

● arista.eos:
○ Fundamental modules (eos_config, eos_command, eos_facts)
○ Resource modules (eos_inerfaces, eos_bgp etc.)

Collection can be downloaded from: https://galaxy.ansible.com/

https://galaxy.ansible.com/ansible/netcommon
https://galaxy.ansible.com/ansible/utils
https://galaxy.ansible.com/arista/eos
https://galaxy.ansible.com/

● cisco.ios:
○ Fundamental modules (ios_config, ios_command, ios_facts)
○ Resource modules (ios_inerfaces, ios_bgp etc.)

● cisco.iosxr:
○ Fundamental modules (iosxr_config, iosxr_command, iosxr_facts)
○ Resource modules (iosxr_inerfaces, iosxr_bgp etc.)

● cisco.nxos:
○ Fundamental modules (nxos_config, nxos_command, nxos_facts)
○ Resource modules (nxos_inerfaces, nxos_bgp etc.)

● junipernetworks.junos:
○ Fundamental modules (junos_config, junos_command, junos_facts)
○ Resource modules (junos_inerfaces, junos_bgp etc.)

● vyos.vyos:
○ Fundamental modules (vyos_config, vyos_command, vyos_facts)
○ Resource modules (vyos_inerfaces, vyos_bgp etc.)

Collection can be downloaded from: https://galaxy.ansible.com/

https://galaxy.ansible.com/cisco/ios
https://galaxy.ansible.com/cisco/iosx
https://galaxy.ansible.com/cisco/nxos
https://galaxy.ansible.com/junipernetworks/junos
https://galaxy.ansible.com/vyos/vyos
https://galaxy.ansible.com/

Ansible Network Ecosystem

ENTERPRISE
FIREWALLS

SWITCHES ROUTERS LOAD
BALANCERS CONTROLLERS

IP ADDRESS
MGMT

100+
Network SecurityInfrastructure Cloud

certified content
collections

Fundamental modules

Network modules to fetch state

● ansible.netcommon.cli_command:
○ Send the command to a network device and returns the result read from

device.
○ The returned result can be in human readable plain text format or in

structured format (e.g. JSON) based on device capability.
○ Provide executing command requiring inputs for multiple cli prompts

● <network_os>_command:
○ For example arista.eos.eos_command, cisco.ios.ios_command and so on
○ Sends arbitrary commands to an node and returns the results read from the

device.
○ Has an argument that will cause the module to wait for a specific condition

before returning or timing out if the condition is not met.

● <network_os>_facts:
○ For example arista.eos.eos_facts, cisco.ios.ios_facts and so on
○ Runs a predefined set show commands to gather operational and

configurational data.

Network modules to fetch state (contd.)

● ansible.netcommon.netconf_get:
○ This module allows the user to fetch configuration and state data from

NETCONF enabled network devices.
○ Work with ansible.netcommon.netconf connection

● ansible.netcommon.netconf_rpc:
○ This module allows the user to execute NETCONF RPC requests as defined by

IETF RFC standards as well as proprietary requests.
○ Returns XML/JSON response data
○ Work with ansible.netcommon.netconf connection

Network modules to configuration management

● ansible.netcommon.cli_config:
○ This module provides platform agnostic way of pushing text based

configuration to network devices over network_cli connection plugin.

● <network_os>_config:
○ This module provides an implementation for working with network

configuration sections in a deterministic way.
○ Provides additional features like backup running config to a file on local

system
○ Works with ansible.netcommon.network_cli connection

● ansible.netcommon.netconf_config:
○ This module allows the user to send a configuration in XML/JSON format to a

netconf enabled device, and detects if there was a configuration change.
○ Work with ansible.netcommon.netconf connection

Demo

(See modules discussed so far in action)

Resource modules

Cons of <network_os>_config module

Source of truth in structured format
(inventory variables)

example config task

vlans:
- name: desktops

vlan_id: 20
- name: servers

vlan_id: 30
- name: printers

vlan_id: 40
- name: DMZ

vlan_id: 50

- name: load config
arista.eos.eos_config:

src: “eos.cfg”
Complex jinja2

templates
device
specific

CLI
commands

network
device

vlans:
- name: desktops

vlan_id: 20
- name: servers

vlan_id: 30

- name: printers

vlan_id: 40

- name: DMZ

vlan_id: 50

Manage specific network resources
Facts for everything

Network native
configuration

Resource
module

Managing device state

Practical examples of using network resource modules

vlans:
- name: desktops

vlan_id: 20
- name: servers

vlan_id: 30
- name: printers

vlan_id: 40
- name: DMZ

vlan_id: 50

- name: add VLAN configuration
arista.eos.vlans:

config: “{{ vlans }}”
state: merged

Merged - add/increment
Replaced - template/diff
Overridden - force/policy
Deleted - destroy/remediate

State:

Understanding state parameters

- name: add VLAN configuration
arista.eos.vlans:

config: “{{ vlans }}”
state: merged

Existing config

Ansible task

vlans:
- name: desktops
vlan_id: 5

- name: servers
vlan_id: 10

- name: dmz
vlan_id: 20

YAML Source of Truth

state: merged

sh run | s vlan
vlan 5

name desktops
state suspend

!
vlan 10

name servers
!
vlan 20

name dmz
!
vlan 50

name voip

New Config

sh run | s vlan
vlan 5

name desktops
state suspend

!
vlan 10

name servers
!
vlan 50

name voip

Understanding state parameters

- name: add VLAN configuration
arista.eos.vlans:

config: “{{ vlans }}”
state: replaced

Existing config

Ansible task

vlans:
- name: desktops
vlan_id: 5

- name: servers
vlan_id: 10

- name: dmz
vlan_id: 20

YAML Source of Truth

state: replaced

sh run | s vlan
vlan 5

name desktops
!
vlan 10

name servers
!
vlan 20

name dmz
!
vlan 50

name voip

New Config

sh run | s vlan
vlan 5

name desktops
state suspend

!
vlan 10

name servers
!
vlan 50

name voip

Understanding state parameters

- name: add VLAN configuration
arista.eos.vlans:

config: “{{ vlans }}”
state: overridden

Existing config

Ansible task

vlans:
- name: desktops
vlan_id: 5

- name: servers
vlan_id: 10

- name: dmz
vlan_id: 20

YAML Source of Truth

state: overridden

sh run | s vlan
vlan 5

name desktops
!
vlan 10

name servers
!
vlan 20

name dmz

New Config

sh run | s vlan
vlan 5

name desktops
state suspend

!
vlan 10

name servers
!
vlan 50

name voip

Understanding state parameters

- name: add VLAN configuration
arista.eos.vlans:

config: “{{ vlans }}”
state: deleted

Existing config

Ansible task

vlans:
- name: desktops

vlan_id: 5
- name: servers

vlan_id: 10
- name: dmz

vlan_id: 20

YAML Source of Truth

state: deleted

sh run | s vlan
vlan 50

name voip

New Config

sh run | s vlan
vlan 5

name desktops
!
vlan 10

name servers
!
vlan 50

name voip

Network Resource Modules - Return values
Practical examples of using network resource modules

▸ before
The configuration prior to module execution is always
returned.

▸ commands
delta command set for the device

▸ after
the configuration post module execution

Commands

Before

Understanding return values

Existing config

vlans:
- name: desktops
vlan_id: 5

- name: servers
vlan_id: 10

- name: dmz
vlan_id: 20

YAML Source of Truth

state: merged

before:
- name: desktops
state: suspend
vlan_id: 5

- name: servers
state: active
vlan_id: 10

- name: voip
state: active
vlan_id: 50

commands:
- vlan 20
- name dmz

After

after:
- name: desktops
state: suspend
vlan_id: 5

- name: servers
state: active
vlan_id: 10

- name: dmz
state: active
vlan_id: 20

- name: voip
state: active
vlan_id: 50

sh run | s vlan
vlan 5

name desktops
state suspend

!
vlan 10

name servers
!
vlan 50

name voip

Demo

(See resource modules discussed so far in
action)

Operational state
management modules

Common state assessment workflow

Use cases for operational state data assessment

● Retrieve (source of truth):
○ Collect the current operational state from the remote host
○ Convert it into normalised structure data.
○ Store is as inventory variables

● Validate:
○ Define the desired state criteria in a standard based format
○ Retrieve operational state at runtime
○ Validate the current state data against the pre-defined criteria to

identify if there is any deviation.

● Remediate:
○ Required configuration changes to remove the drift
○ Reporting

Use cases for operational state data assessment

● Conditional task and roles within Ansible playbooks (pre-config)
○ Only make configuration changes if all the BGP neighbours are

healthy

● Fleet health assessment and inventory
○ Ensure all configured NTP servers are in sync

● Post change validation
○ LLDP, OSPF neighbours and reachability has not changed

● Custom reports using templates
○ Interface operating state vs. configured state

Retrieving operational state in structured format

● ansible.utils.cli_parse:

○ Module available now in ansible.utils collection

○ Parse CLI output or text using a variety of parsers

○ Works with all platforms (network/linux/windows)

○ Work with many parsing engines and is extensible

○ Single task to run a command, parse & set facts

○ Returns structured data from show command output

https://galaxy.ansible.com/ansible/utils

https://galaxy.ansible.com/ansible/utils

Retrieving operational state in structured format

tasks:
- name: Run a command and parse results

ansible.utils.cli_parse:
command: show interfaces
parser:

name: ansible.utils.xxxx
set_fact: interfaces

● Runs the command on the device

● Parse using the ‘xxxx’ engine

● Uses default template folder

● Parsed data set as fact

● Command output returned as
stdout

Available ansible.utils.cli_parse parsing engines

● ansible.utils.textfsm: Python module for parsing semi-formatted text

● ansible.utils.ttp: Template based parsing, low regex use, jinja like DSL

● ansible.netcommon.native: Internal jinja, regex, yaml. No additional 3rd party

libraries required

● ansible.netcommon.ntc_templates: Predefined textfsm templates packaged

as python library

● ansible.netcommon.pyats: Cisco Test Automation & Validation Solution (11

OSs/2500 parsers)

● ansible.utils.xml: convert XML to json using xmltodict

Thank you library developers & contributors

show interfaces
Ethernet1 is up, line protocol is up (connected)

Hardware is Ethernet, address is 022e.dbe8.1375
(bia 022e.dbe8.1375)

Internet address is 172.18.104.95/16
Broadcast address is 255.255.255.255
Address determined by DHCP
IP MTU 1500 bytes , BW 1000000 kbit
Full-duplex, 1Gb/s, auto negotiation: on, uni-

link: n/a
Up 10 hours, 51 minutes, 55 seconds
Loopback Mode : None
3 link status changes since last clear
Last clearing of "show interface" counters never
5 minutes input rate 950 bps (0.0% with framing

overhead), 1 packets/sec
5 minutes output rate 858 bps (0.0% with framing

overhead), 1 packets/sec
19361 packets input, 2964452 bytes
Received 0 broadcasts, 0 multicast
0 runts, 0 giants

<rest of output removed for brevity>

result["parsed"]:
Ethernet1:

hardware: Ethernet
mac_address: 022e.dbe8.1375
state:

operating: up
protocol: up

Loopback0:
hardware: Loopback
state:

operating: up
protocol: up

Tunnel0:
hardware: Tunnel
mac_address: ac12.685f.0800
state:

operating: up
protocol: up

Parsing Example (1/3)

parsing using native Ansible parsing library

Network Device output Parsed Data

- name: parse example
hosts: network
gather_facts: false
tasks:
- name: run command and parse with

native ansible parser
ansible.utils.cli_parse:
command: "show interface"
parser:
name: ansible.netcommon.native

register: result

- debug:
var: result["parsed"]

Parsing Example (2/3)
How does it work?

Ansible Playbook

Example with Arista EOS

ansible_newtork_os: arista.eos.eos
command: “show interface”

Looks for:
templates/eos_show_interface.yaml

- example: Ethernet1 is up, line protocol is up (connected)
getval: '(?P<name>\S+) is (?P<oper_state>\S+), line protocol is

(?P<proto_state>\S+)'
result:
"{{ name }}":
state:
operating: "{{ oper_state }}"
protocol: "{{ proto_state }}"

shared: true

- example: "Hardware is Ethernet, address is 022e.dbe8.1375 (bia 022e.dbe8.1375)"
getval: '(\s+Hardware is (?P<hardware_type>\w+))(,\saddress is (?P<mac>\S+))?'
result:
"{{ name }}":
hardware: "{{ hardware_type }}"
mac_address: "{{ mac | default(None) }}"

Parsing Example (3/3)
Easy to share templates with others

Parsing Template Example

templates/eos_show_interface.yaml

Integrating with pyATS & Genie
Quick setup for Cisco Network Devices

Install Python Packages

pip install pyats genie

Run Ansible Playbook

Output to terminal window

ok: [rtr1] =>
result["parsed"]:
vrf:
default:
address_family:
? ''
: routes:

10.200.200.0/24:
index:
'1':
next_hop: 10.200.200.2
origin_codes: i
path: '65001'
status_codes: '*'
weight: 0

'2':
metric: 0

<rest of output removed for brevity>

- name: parse bgp example
hosts: rtr1
gather_facts: false
tasks:
- name: Parse BGP 'show ip bgp'
ansible.utils.cli_parse:
command: show ip bgp
parser:
name: ansible.netcommon.pyats

register: result

- debug:
var: result["parsed"]

Validating structured data using Ansible

● ansible.utils.validate:

○ New module available now in ansible.utils collection
○ Works with all platforms

○ Has extensible validation engine support, currently works with
jsonschema validation engine

○ Single task to read the structured data and validate it with data model
schemas

○ Returns either list of errors or success (in case data is valid as per schema)

https://pypi.org/project/jsonschema/

Validating structured data using Ansible

tasks:
- name: "Validate structured data"
ansible.utils.validate:
data: "{{ input_data }}"
criteria:
- "{{ lookup('file', './criteria.json') | from_json }}"
engine: ansible.utils.xxxx

● Reads the input JSON data and the criteria for data (schema
mode)

● Validate using the ‘xxxx’ engine

● Returns list of error if data does not conform to the schema
criteria

Available ansible.utils.validate validation engines

● ansible.utils.jsonschema: Python module to validate json data against a
schema

More validation engines in pipeline

Take away

Start Small
Quick automation victories for network engineers

Config Backup and Restore Dynamic Documentation Scoped Config Management
Use Ansible facts to gain information

• Read-only, no production config change

• Dynamic Documentation and reporting
• Understand your network

Ubiquitous first touch use case
• Gain confidence in automation quickly

• First steps towards network as code
• Quickly recover network steady state

Focus on high yield victories
• Automate VLANs, ACLs and SNMP config

• Introduce source of truth concepts
• Enforce Configuration policy

✓

✓ ✓ ✓

Infrastructure as code
• Data centric automation

• Deploy configuration pipelines
• GitOps for Network Automation

Think Big
Institutionalizing automation into your organization

Automated NetOpsOperational State ValidationNetwork Compliance
Going beyond config management
• Parsing operational state to structured values

• Schema validation and verification
• Enhance operational workflows

Respond quickly and consistently
• Security and config compliance for network

• Remove human error from security responses
• Enforce Configuration policies and hardening

✓

✓ ✓

References

● https://docs.ansible.com/ansible/latest/network/user_guide/platform_index.html

● https://docs.ansible.com/ansible/2.9/dev_guide/overview_architecture.html

● https://docs.ansible.com/ansible/latest/network/dev_guide/developing_plugins_n
etwork.html

● https://docs.ansible.com/ansible/latest/network/user_guide/network_resource_m
odules.html

● https://docs.ansible.com/ansible/latest/network/user_guide/cli_parsing.html

● https://docs.ansible.com/ansible/devel/network/user_guide/validate.html

https://docs.ansible.com/ansible/latest/network/user_guide/platform_index.html
https://docs.ansible.com/ansible/2.9/dev_guide/overview_architecture.html
https://docs.ansible.com/ansible/latest/network/dev_guide/developing_plugins_network.html
https://docs.ansible.com/ansible/latest/network/user_guide/network_resource_modules.html
https://docs.ansible.com/ansible/latest/network/user_guide/cli_parsing.html
https://docs.ansible.com/ansible/devel/network/user_guide/validate.html

Thank you

