INGRESS AND EGRESS FILTERING FOR **SERVICE PROVIDERS**

WHOAMI

- Brian Knight
- Engineering Director at Nitel [AS 53828]
- Based in Chicago, IL
- Business eyeballs
 Internet DIA, MPLS VPNs, L2 Ethernet, SD-WAN
- I brian at knight-networks dot. com
- / <u>https://www.linkedin.com/in/brian-knight-94394021/</u>

OUTLINE

- How We Got Started
- Decisions Made
- / Scenarios
- Implementation
- / Observations
- / Recommendations

HOW WE GOT STARTED

 Oct 2020: Casey Deccio's DSAV team from BYU notified us of DNS spoofing vulnerabilities
 /Team was measuring vulnerability to DNS amplification attacks

We found that:

- In fact, DNS spoofing was possible because no anti-spoofing existed on network edge ports
- Could not find easy howto for configuring anti-spoofing on an SP network
- Posted to ML in Oct 2020

HOW WE GOT STARTED

- Many eyeball networks in the NANOG community did ingress filtering
- Many also:
 - /Performed egress filtering
 - /Blocked invalid IPs (bogon filtering)
 - /Blocked invalid ports
 - I Blocked traffic to critical infrastructure
- We still struggled to find a clear howto / template
 That's what this preso strives to be

HOW WE GOT STARTED

- Ingress filtering covered in depth by BCP 84 / RFC 3704
 Outlines 5 techniques for anti-spoofing measures
 Discusses implementation recommendations
- Has the same overarching goal as BCP 38
 / Filtering traffic from single-homed sites to SP's
- I But BCP 84's audience includes any multi-homed network
- Deals mainly with security at data plane
 / Don't throw out your BGP route maps and prefix lists

DECISIONS MADE

Static ACLs seemed to be the only way /Loose RPF:

- If route exists in RIB, accept pkt
- Too little granularity
- /Loose RPF ignoring default route:
 - Same as above, just doesn't consider default route
- / Strict RPF:
 - If route exists in RIB, and pkt came from best destination interface, accept
 - Too strict would block legitimate traffic
- /Feasible RPF:
 - If route exists in RIB, and pkt came in on any valid destination interface
 - Not currently an option on \$VENDOR_C_XR

DECISIONS MADE

- I Block invalid traffic on egress as well as ingress
- Block "Bogon" traffic in and out
- I Block multicast
- Invalid services or ports
 /UDP and TCP port 0 should never be seen or used
 /UDP and TCP port 445 should not be used
- Infrastructure
 - / Except for ICMP and traceroute, nothing should be permitted to hit our router loopbacks or internal point-to-point links

DECISIONS MADE

- I Ease of administration was key
- Implementation should be the same on every device
 /Same set of ACLs, configured the same way
 - The same ACL set is used on all { transit, IX, direct peer } ports on all routers
 - /The same object groups are used on all routers
 - The same prefixes are in the same object groups across the entire router fleet

SCENARIOS – INGRESS AGGREGATE

- Source is part of aggregate block
- / DENY

SCENARIOS – INGRESS CUSTOMER

- / Source = customer PI/PA block
- / PERMIT

SCENARIOS – INGRESS CUSTOMER

- / Source = customer PI/PA block
- / PERMIT

SCENARIOS – EGRESS

- / Egress
- Source is not from customer or aggregate
- / DENY

- Static ACL approach
- Inbound and outbound ACLs, for IPv4 and IPv6
- Object groups
- Content of ACLs and groups is exactly the same across every router

IMPLEMENTATION – OBJECT GROUPS

IPV4 GROUP	IPV6 GROUP	PURPOSE
IPV4-IX	IPV6-IX	All IX prefixes at all locations
IPV4-PEER-WAN	IPV6-PEER-WAN	My direct peer /30's or /126's
IPV4-TRAN-WAN	IPV6-TRAN-WAN	My transit /30's or /126's
IPV4-CUST	IPV6-CUST	Customer PI / PA prefixes
IPV4-BOGON	IPV6-BOGON	Non-unique or invalid prefixes
IPV4-INFRA	IPV6-INFRA	Router loopbacks and point-to-points
IPV4-BGP-AGG	IPV6-BGP-AGG	My aggregate prefixes
IPV4- BACKDOOR- HOSTS		Other hosts found to be sending traffic into my network Treated similar to IPV4-CUST

Four static ACLs
 / IPV4-INET-IN
 / IPV4-INET-OUT
 / IPV6-INET-IN
 / IPV6-INET-OUT

Ingress ACLs IPV4-INET-IN and IPV6-INET-IN

- / Deny bogon IPs
- /Deny invalid port 0
- / Permit all traffic to/from transit, IX, and peering WAN blocks
- / Deny multicast
- / Permit where source = BGP customer IP space
- / Deny where source = Agg IP space
- / Permit where dest = Agg + Customer IP space
- / Deny any any

*See appendix for an example of these ACLs

Egress ACLs IPV4-INET-OUT and IPV6-INET-OUT Deny bogon IPs Deny invalid port 0 Permit all traffic to/from transit, IX, and peering WAN blocks Deny multicast Permit where dest = Customer IP space Permit where source = Nitel Agg + Customer IP space Deny any any

*See appendix for an example of these ACLs

The Plan:

- Create the initial ACLs (IPv4 and IPv6)
- Apply to Internet transits, IXes, and direct peers
- I Enable blocking for bogon prefixes immediately
- I Other rules that were intended to be "deny", make them permit / log rules for the testing period
- Analyze logs for matching traffic
- / Refine the ACL & object groups
- Repeat until only unwanted traffic is being logged
- / Switch "permit" to "deny"

/ Traffic review ACLs logged denied traffic to our syslog server Logs were processed into CSV CSV imported into Excel Used a PivotTable to summarize and view the data IPs were cross-referenced as needed with router configs, RIB/FIB, and BSS/OSS to determine if traffic was legit 3 weeks' worth of logs were analyzed

- Bogon prefixes
 Blocked from the start
 No issues observed
- Invalid ports
 Port 0
 - Initially saw a lot of random traffic \$VENDOR_C_XR logs fragments with port = 0!
 - Plenty of scanning and abuse, no real traffic observed
 - Many network tools don't permit the use of port 0
 - / Port 445
 - We did observe traffic that appeared to be bona fide
 - We decided to abandon port 445 blocking

Infrastructure

/A lot of abuse hit our infrastructure – all different ports

/None of it was valid traffic

I. Except for that IPsec tunnel terminating to an old concentrator...

- Found many MPLS VPN IPs coming back in via transits
 - / IPs were globally unique but not routed across public Internet
 - / Customers likely had firewalls that did not NAT for globally unique IPs

- Inbound anti-spoofing
 - / Found a few Internet WAN IPs with back-door routing
 - In the interest of not breaking things that have been working, these were explicitly permitted in a separate ACL entry
- Inbound catch-all deny rule
 No significant traffic found

Outbound anti-spoofing

/Other carriers' MPLS VRFs where WAN IP was not assigned by us

- These VRFs were used to provide Internet access through us
- /Lots of back-door connections
 - Customer router receives traffic on other provider's WAN IP, reply sent through us

/These were blocked

- Outbound anti-spoofing
 - / Source = Internet
 - / Dest = customer IPs
 - Routing policy from customer did not make it to the remote end
 - So remote side would send reply to us, then we would forward back out transits
 - Can't assume BGP customer traffic will be routed to them directly

/ Process implications

- Any BGP customer must have their prefixes added to IPV4-CUST or IPV6-CUST on all routers
- / Any new aggregate blocks must be added to IPV4-AGG or IPV6-AGG
- If a customer calls in with an issue where traffic is not getting through, we may need to look at those filters
- In practice, this has not cost us in terms of admin time
 Had two issues with this since implementation, both resolved quickly
- After implementation, the DSAV team showed that we were no longer vulnerable to spoofed DNS traffic

RECOMMENDATIONS

- Agree internally what you plan to block
- The usual: Get all stakeholders involved early, communicate often
- I The usual: Test, test, test
 - / Start with rules that permit undesired traffic, but log
 - /Then run down everything in your logs before switching the rules to deny

FUTURE WORK

- Automation of object-group IP block management
- Further security analysis and lockdown of point-to-point subnets
 - **/**These are open wide from any subnet to the /30 or /126
 - /A better practice may be to block all protocols except ICMP, traceroute, and BGP
- Further characterization of infrastructure subnets

THANK YOU!

object-group network ipv4 IPV4-BOGON	object-group network ipv6 IPV6-BOGON
<pre># Contains non-unique or invalid prefixes</pre>	<pre># Contains non-unique or invalid prefixes</pre>
0.0.0/8	::/3
10.0.0/8	4000::/3
100.64.0.0/10	6000::/3
127 0 0 0/8	8000::/3
	a000::/3
1/2.16.0.0/12	c000::/3
198.18.0.0/15	e000::/4
240.0.0/4	f000::/5
169.254.0.0/16	f800::/6
192.0.0/24	fc00::/7
192.0.2.0/24	fe00::/9
192.168.0.0/16	fec0::/10
198.51.100.0/24	2001::/23
203.0.113.0/24	2001:2::/48
decarintion Invalid IDVA notvorka	2001:10::/28
description invalid iPV4 networks	2001:db8::/32
	2002::/16
	3ffe::/16

description Invalid IPV6 networks

ipv4 access-list IPV4-INET-IN 10 remark BCP 84 for transits, IX, and peering 101 remark *** Block bogon networks as src or dest *** 110 deny ipv4 net-group IPV4-BOGON any 111 deny ipv4 any net-group IPV4-BOGON 201 remark *** Blocked protocols *** 210 deny udp any port-group TCPUDP-BLOCKED any log 211 deny udp any any port-group TCPUDP-BLOCKED log 212 deny tcp any port-group TCPUDP-BLOCKED any log 213 deny tcp any any port-group TCPUDP-BLOCKED log 301 remark *** Transit, IX, peer connected networks *** 310 permit ipv4 net-group IPV4-PEER-WAN any 311 permit ipv4 any net-group IPV4-PEER-WAN 312 permit ipv4 net-group IPV4-TRAN-WAN any 313 permit ipv4 any net-group IPV4-TRAN-WAN 314 permit ipv4 net-group IPV4-IX any 315 permit ipv4 any net-group IPV4-IX 401 remark *** Block multicast *** 410 deny ipv4 224.0.0.0 15.255.255.255 any 411 deny ipv4 any 224.0.0.0 15.255.255.255

```
501 remark *** Protect infrastructure subnets ***
510 deny icmp any net-group IPV4-INFRA fragments log
511 permit icmp any net-group IPV4-INFRA
512 permit udp any range 1024 65535 net-group IPV4-INFRA range 33435
33535
513 permit udp any range 33435 33535 net-group IPV4-INFRA range 1024
65535
514 deny ipv4 any net-group IPV4-INFRA
601 remark *** Customer Inet BGP Announced Prefixes ***
620 permit ipv4 net-group IPV4-CUST any
640 permit ipv4 net-group IPV4-BACKDOOR-HOSTS any
701 remark *** Block originated networks ***
710 deny ipv4 net-group IPV4-BGP-AGG any log
801 remark *** Permit traffic only to networks we announce ***
820 permit ipv4 any net-group IPV4-BGP-AGG
840 permit ipv4 any net-group IPV4-CUST
901 remark *** Deny all other traffic ***
910 deny ipv4 any any log
```

ipv6 access-list IPV6-INET-IN 10 remark BCP 84 for transits, IX, and peering 101 remark *** Block bogon networks as src or dest *** 110 deny ipv6 net-group IPV6-BOGON any 111 deny ipv6 any net-group IPV6-BOGON 201 remark *** Blocked protocols *** 210 deny udp any port-group TCPUDP-BLOCKED any log 211 deny udp any any port-group TCPUDP-BLOCKED log 212 deny tcp any port-group TCPUDP-BLOCKED any log 501 remark *** Protect infrastructure subnets *** 213 deny tcp any any port-group TCPUDP-BLOCKED log 301 remark *** Transit, IX, peer connected networks *** 510 deny icmpv6 any net-group IPV6-INFRA fragments log 511 permit icmpv6 any net-group IPV6-INFRA 310 permit ipv6 fe80::/10 any 311 permit ipv6 net-group IPV6-PEER-WAN any 512 permit udp any range 1024 65535 net-group IPV6-INFRA range 33435 33535 312 permit ipv6 any net-group IPV6-PEER-WAN 313 permit ipv6 net-group IPV6-TRAN-WAN any 513 permit udp any range 33435 33535 net-group IPV6-INFRA range 1024 314 permit ipv6 any net-group IPV6-TRAN-WAN 65535 315 permit ipv6 net-group IPV6-IX any 514 deny ipv6 any net-group IPV6-INFRA 316 permit ipv6 any net-group IPV6-IX 601 remark *** Customer Inet BGP Announced Prefixes *** 401 remark *** Block multicast *** 620 permit ipv6 net-group IPV6-CUST any 410 deny ipv6 ff00::/8 any 701 remark *** Block networks we originate *** 710 deny ipv6 net-group IPV6-BGP-AGG any log 411 deny ipv6 any ff00::/8 801 remark *** Permit traffic only to networks we announce *** 820 permit ipv6 any net-group IPV6-BGP-AGG 840 permit ipv6 any net-group IPV6-CUST 901 remark *** Deny all other traffic ***

910 deny ipv6 any any log

ipv4 access-list IPV4-INET-OUT 10 remark BCP 84 for transits, IX, and peering 101 remark *** Block bogon networks as src or dest *** 110 deny ipv4 net-group IPV4-BOGON any 111 deny ipv4 any net-group IPV4-BOGON 201 remark *** Blocked protocols *** 210 deny udp any port-group TCPUDP-BLOCKED any log 211 deny udp any any port-group TCPUDP-BLOCKED log 212 deny tcp any port-group TCPUDP-BLOCKED any log 213 deny tcp any any port-group TCPUDP-BLOCKED log 301 remark *** Transit, IX, peer networks *** 310 permit ipv4 net-group IPV4-PEER-WAN any 311 permit ipv4 any net-group IPV4-PEER-WAN 312 permit ipv4 net-group IPV4-TRAN-WAN any 313 permit ipv4 any net-group IPV4-TRAN-WAN 314 permit ipv4 net-group IPV4-IX any 315 permit ipv4 any net-group IPV4-IX 401 remark *** Block multicast *** 410 deny ipv4 224.0.0.0 15.255.255.255 any 411 deny ipv4 any 224.0.0.0 15.255.255.255 601 remark *** Customer Inet BGP Announced Prefixes *** 620 permit ipv4 any net-group IPV4-CUST 640 permit ipv4 any net-group IPV4-BACKDOOR-HOSTS 801 remark *** Permit locally sourced traffic *** 820 permit ipv4 net-group IPV4-BGP-AGG any 840 permit ipv4 net-group IPV4-CUST any 901 remark *** Deny all other traffic *** 910 deny ipv4 any any log

ipv6 access-list IPV6-INET-OUT 10 remark BCP 84 for transits, IX, and peering 101 remark *** Block bogon networks as src or dest *** 110 deny ipv6 net-group IPV6-BOGON any 111 deny ipv6 any net-group IPV6-BOGON 201 remark *** Blocked protocols *** 210 deny udp any port-group TCPUDP-BLOCKED any log 211 deny udp any any port-group TCPUDP-BLOCKED log 212 deny tcp any port-group TCPUDP-BLOCKED any log 213 deny tcp any any port-group TCPUDP-BLOCKED log 301 remark *** Transit, IX, peer networks *** 310 permit ipv6 fe80::/10 any 311 permit ipv6 net-group IPV6-PEER-WAN any 312 permit ipv6 any net-group IPV6-PEER-WAN 313 permit ipv6 net-group IPV6-TRAN-WAN any 314 permit ipv6 any net-group IPV6-TRAN-WAN 315 permit ipv6 net-group IPV6-IX any 316 permit ipv6 any net-group IPV6-IX 401 remark *** Block multicast *** 410 deny ipv6 ff00::/8 any 411 deny ipv6 any ff00::/8 601 remark *** Customer Inet BGP Announced Prefixes *** 620 permit ipv6 any net-group IPV6-CUST 801 remark *** Permit locally sourced traffic *** 820 permit ipv6 net-group IPV6-BGP-AGG any 840 permit ipv6 net-group IPV6-CUST any 901 remark *** Deny all other traffic *** 910 deny ipv6 any any log

REFERENCES

- / BCP 84: https://tools.ietf.org/search/bcp84
- Post to mailing list: https://mailman.nanog.org/pipermail/nanog/2020-October/210030.html