
Cutting Down on IP Address Waste

IPv4 Unicast Extensions Project

IPv4 Unicast Extensions Project

● An effort to reduce waste of IPv4 addresses
that are currently completely unused

● Established by John Gilmore, with technical
work by Paul Wouters, Dave Täht, Seth Schoen
– Mike Karels has also joined as co-author of one

draft RFC
● Thanks to many colleagues who have offered

comments and historical insights

Our proposals

● Unreserve four kinds of reserved IPv4 address,
asking implementers to treat them as unicast
– These addresses are reserved for historical

reasons, to minimal or no useful purpose today
– This will free up a substantial amount of IPv4 space

● With the measurement community, test the
effects of using these addresses on the Internet
– If useful, they can be allocated some day

Historical decisions

● Throughout the 1980s—when IP’s future was
less clear, and scarcity a less prominent
concern—various decisions treated large
numbers of addresses specially

● With decades of hindsight, some of those
decisions are not helpful and are now
preventing large amounts of otherwise useful
address space from being used for unicast
addressing

Current status

● Four Internet-Drafts proposing to unreserve
addresses for unicast use
– draft-schoen-intarea-unicast-lowest-address
– draft-schoen-intarea-unicast-240
– draft-schoen-intarea-unicast-0
– draft-schoen-intarea-unicast-127

● Presented first two at IETF112 to some controversy
(especially about 127/8!)

● We’ll discuss specific addresses and software support

Wasted addresses: Lowest

● Suppose we have a network 42.43.44.0/24
– Berkeley chose the lowest address (42.43.44.0) for

broadcast
– Developers elsewhere chose the highest address

(42.43.44.255) for broadcast
● The highest address won out in all recommendations

and documentation, but the lowest address remained
reserved, explicitly for backwards compatibility

… with systems that haven’t existed for decades!

Wasted addresses: Lowest

● One address is wasted per subnet. For
example, if you have a /28 subnet, the duplicate
broadcast address would be 1/16 of your
addresses

● Subnetting within an organization causes this to
become more significant, as each subnet loses
an additional address

Lowest address fix is local (!!)

● Under existing RFCs, distant (non-subnet-local)
hosts must not assume the netmask of your hosts
(they don’t know where subnet boundaries fall in
networks to which they’re not attached)

● If just your router and LAN support the lowest
address as unicast, the rest of the Internet should
already interoperate with the lowest address on
your subnet!
– Try examples at http://ec2-reachability.amazonaws.com/

Wasted addresses: Experimental

● All the addresses from 240.0.0.0 upward (2²⁸
addresses) are “reserved for future use” due to a
decision in 1983
– Futureproofing IPv4 for potential new addressing

modes (e.g. dedicated anycast or encoding >32-bit
addresses)

– That was reasonable at the time, but 240/4 has still
never been used for anything

– New IPv4 addressing modes are very unlikely to be
invented now

Wasted addresses: Zero network

● All the addresses from 0.0.0.0 to 0.255.255.255
(2²⁴ addresses) are reserved due to a decision
in 1981
– Mainly intended to be used for autoconfiguration
– But the autoconfiguration solutions that won out

(BOOTP → DHCP) use only one of these
addresses (0.0.0.0), not 2²⁴; the system that would
have used all of them was deprecated in 1989

Wasted addresses: Loopback

● All of the addresses from 127.0.0.0 to
127.255.255.255 (2²⁴ addresses) are reserved
due to a decision in 1986.
– All of these mean “this system”
– By contrast, IPv6 only has the single loopback

address ::1
– It’s not common for loopback addresses outside of

127.0.0.0/16 (65536 addresses) to be used at all
● Apparently one VPN product in Japan uses them

Wasted addresses: Multicast

● All of the addresses from 224.0.0.0 to
239.255.255.255 (2²⁸ addresses) are reserved for
multicast, which is little-used compared to unicast
– In principle, the majority of these addresses can be

reclaimed: they’ll never be used for multicast services
– Reclaiming these addresses is more complicated

because special behavior is still ubiquitous, and
used/unused blocks are more interleaved compared to
other ranges

● We don’t currently have an I-D about this address space

How many addresses?

draft-schoen-intarea-unicast-lowest-address
● “One address per subnet, Internetwide”

draft-schoen-intarea-unicast-240
● 2²⁸-1 = 268,435,455 (6.25% of all IPv4)

draft-schoen-intarea-unicast-0
● 2²⁴-1 = 16,777,215 (0.389% of all IPv4)

draft-schoen-intarea-unicast-127
● 2²⁴-2¹ = 16,711,680 (0.389% of all IPv4)⁶

hypothetical 224/4: hundreds of millions

Software support
● 240/4 : Most popular Unix-based systems (mostly inspired

by a prior proposal in 2008!), including Linux, Android,
macOS, iOS

● Lowest address : Linux, FreeBSD
● 0/8 : Linux
● 127/8 : None known
● 224/4 : None known

– Changes mostly consist of identifying and removing special cases
in IP stacks, and testing interoperability

– Generally, no one has noticed

No one noticed?

● Right!
● Many of the changes we propose landed in

various operating systems already (through our
and others’ work)
– There was no catastrophe
– We have yet to find any complaints or bug reports

● You may be watching this presentation on a
240/4-capable device right now!

240/4 experiences

● When we’ve made “MarsNet” wifi networks with
240/4 internal addresses+NAT, clients other
than Windows worked fine with no special
configuration
– You can try this yourself at home (if your CPE router

doesn’t play along, contact us for help)
● Currently, Microsoft is the outlier among OS

vendors in actively forbidding interoperability
with these addresses in its current systems

A gradual process

● Problem: if machines A and B disagree about the
validity of an address, and one is numbered with
that address or asked to route it, communication
may not occur

● It takes time to update software
● Our changes have limited backwards compatibility

(except for lowest-address), so getting widespread
support in devices will take some time

● That’s why we should start in 2008; if not then, now

When to plant a tree

“The best time to plant a tree was 30 years ago.
The second best time is now.” – Proverb

Image 2012 Virginia State Parks CC-BYⓒ

Measurement

● We’d like to work with the Internet measurement
community to get some large-scale metrics
about usability of reserved addresses

● Both now and following, or as part of, Internet
community consensus on trying to make
reserved address space more useful

● Empirical data can inform the later decision to
allocate historically reserved address space

Debogonization

● Cloudflare got official permission to use 1.1.1.1 for a
DNS server, launched in 2018

● Many networks had hard-coded blocking this range.
Cloudflare took > 1 year investigating users’ reports of
unreachability and working with ISPs to remove blocks
– But following that, 1.1.1.1 is now extremely widely

reachable on the Internet (still not 100%, but very high)
● We believe we can follow a similar process with

formerly reserved addresses, once software support
for them is widespread by default

Concerns

● We’ve heard a number of concerns from the
community, at IETF and on NOG mailing lists

● Most were about our 127 draft (which got a lot
of publicity!), but some were broader
– Note that technical concerns about different

reserved addresses are different — for example,
you can unilaterally use the lowest address by
patching only your own systems

● Let’s talk about a few common objections

Relation to IPv6?

● Most common objection: “why not just use IPv6”?
– We favor IPv6 adoption, but still want to mitigate IPv4

address scarcity
● IPv6 as a complete replacement for IPv4 is still decades

away (if not “never”)!
● Meanwhile, IPv4 address scarcity pain continues to exist

– IPv6 software support is already widespread and
mostly excellent; ISP support is lacking

● This makes “IPv4 vs. IPv6” a false dilemma, especially from
the point of view of people working on software

IPv4 maintenance?

● Some people say nobody should maintain or
improve IPv4
– We find this idea seriously mistaken

● IPv4 is the lingua franca of the Internet, the most-used
network layer protocol in the world

● It still carries most Internet traffic

– There’s no IETF consensus to stop work on IPv4;
none emerged from sunset4 WG (2012-8), which
proposed deprecating v4 or forbidding maintenance

● IETF policy requires v6 compatibility, not neglect of IPv4

Immediate exhaustion?

● Some people worry that a new RIR allocation of
(e.g.) 240/4 would be consumed just as quickly as
the last /4s allocated by RIRs
– Market prices, now around $50/address, are strongly

incentivizing more efficient uses of newly available
address space

– APNIC was willing to use market mechanisms itself in
allocating limited address space

– Demand is huge, but quantity demanded at market
prices or at $0 is substantially different

Inconsistent behavior?

● An objection to Fuller, Lear, and Meyer’s 2008
proposal in 2008, repeated against our proposals, is
that we can no longer change addressing semantics
because hosts will then disagree about whether an
address is valid or what it means

● But implementations already disagree about
whether addresses are valid; that’s the status quo!
– If we want to reconverge host behavior, standardizing the

very widespread acceptance of 240/4 is the most efficient
path to do so

Testing

● We’ve been testing the behavior of individual
operating systems and routers with regard to reserved
addresses

● We’d like to start testing the use of these addresses
on the Internet together with the Internet
measurement community

● We anticipate that it will be years before these
addresses can readily be allocated like other unicast
addresses—and that they will probably still be useful
at that time

Economic value

● IPv4 addresses have enormous economic
value; hundreds of millions of dollars at a time
have been paid for large blocks

● Some people express the hope that the cost of
IPv4 addresses will continue to grow and that
this will encourage IPv6 adoption
– We think this connection is typically more tenuous

than people hope

Thanks!

● Questions or comments?
● Contact us:

– Seth Schoen <schoen@loyalty.org>
– John Gilmore <gnu@rfc.toad.com>

BONUS SLIDES

On topics or questions that may arise

Thoughts on updating the Internet
● There are a lot of problems on the Internet involving

unupdated software. E.g., DST X3 Root certificate expiration
in October 2021 → Let’s Encrypt certificates now mostly only
work for clients updated since 2015
– This is an Internet-wide problem associated with every non-

backwards-compatible change (cf. “Caniuse”)
– Arguably, it’s getting less severe these days, as automatic software

updates become much more common
– But people still use devices that are in EOL (although this is

typically a big security problem and is one factor in the prevalence
of botnets) (and many cheap phones get few or no OEM software
updates)

Needed patches are very small

● Typically, remove code or macros that create
special cases for an address range; the IP
implementation will then default to treating it as
unicast.

● That is, we typically just have to stop treating these
address ranges as an error, and then they will
work!
– Sometimes also a small userspace patch, so tools like
ifconfig(8) won’t complain about reserved addresses

Linux lowest address
--- a/net/ipv4/fib_frontend.c

+++ b/net/ipv4/fib_frontend.c

@@ -1122,10 +1122,8 @@ void fib_add_ifaddr(struct in_ifaddr *ifa)

 prefix, ifa->ifa_prefixlen, prim,

 ifa->ifa_rt_priority);

- /* Add network specific broadcasts, when it takes a sense */

+ /* Add the network broadcast address, when it makes sense */

 if (ifa->ifa_prefixlen < 31) {

- fib_magic(RTM_NEWROUTE, RTN_BROADCAST, prefix, 32,

- prim, 0);

 fib_magic(RTM_NEWROUTE, RTN_BROADCAST, prefix | ~mask,

 32, prim, 0);

 }

Linux zero network
--- a/include/linux/in.h

+++ b/include/linux/in.h

 static inline bool ipv4_is_local_multicast(__be32 addr)

@@ -67,7 +72,7 @@ static inline bool
ipv4_is_all_snoopers(__be32 addr)

 static inline bool ipv4_is_zeronet(__be32 addr)

 {

- return (addr & htonl(0xff000000)) == htonl(0x00000000);

+ return (addr == 0);

 }

Linux 240 (“Class E”)
--- a/include/linux/in.h

+++ b/include/linux/in.h

@@ -262,9 +262,10 @@ static inline bool ipv4_is_local_multicast(__be32 addr)

 return (addr & htonl(0xffffff00)) == htonl(0xe0000000);

 }

-static inline bool ipv4_is_badclass(__be32 addr)

+static inline bool ipv4_is_lbcast(__be32 addr)

 {

- return (addr & htonl(0xf0000000)) == htonl(0xf0000000);

+ /* limited broadcast */

+ return addr == INADDR_BROADCAST;

 }

 → Plus s/ipv4_is_badclass/ipv4_is_lbcast/g in other kernel source

Linux 127 (“loopback”)
--- a/include/linux/in.h

+++ b/include/linux/in.h

@@ -37,7 +37,7 @@ static inline int proto_ports_offset(int proto)

 static inline bool ipv4_is_loopback(__be32 addr)

 {

- return (addr & htonl(0xff000000)) == htonl(0x7f000000);

+ return (addr & htonl(0xffff0000)) == htonl(0x7f000000);

 }

 → Plus userspace patches to headers, systemd, and ifconfig

FreeBSD lowest address
--- a/sys/netinet/in.c

+++ b/sys/netinet/in.c

 return ((in.s_addr == ia->ia_broadaddr.sin_addr.s_addr ||

 /*

- * Check for old-style (host 0) broadcast, but

+ * Optionally check for old-style (host 0) broadcast, but

 * taking into account that RFC 3021 obsoletes it.

 */

- (ia->ia_subnetmask != IN_RFC3021_MASK &&

+ (V_broadcast_lowest && ia->ia_subnetmask != IN_RFC3021_MASK &&

 ntohl(in.s_addr) == ia->ia_subnet)) &&

 /*

 → Plus boilerplate that makes V_broadcast_lowest a sysctl option

Should IETF maintain IPv4?

● IETF policy statements require IPv6 compatibility
everywhere, but don’t forbid continued stewardship of
IPv4
– From 2012-2018, the sunset4 WG discussed deprecating

IPv4 or forbidding IETF to work on maintaining it
– No IETF consensus emerged to do these things

● Without IETF’s stewardship, IPv4 implementations
may lose compatibility
– Or another SDO with less institutional expertise may take

over IPv4 maintenance

Continuing to maintain IPv4

● We hope for the reverse consensus: that IETF
continues to accept responsibility for maintaining
IPv4, the most widely-used network-layer protocol in
the world

● We agree that IETF and the Internet community
should encourage IPv6 support in all new
deployments
– But, as some sunset4 participants noted, it’s not clear

that IETF has much power to affect IPv6 deployment one
way or the other!

Carrots and sticks

● We’re surprised that some community members
want to pursue making IPv4 worse or harder
rather than making IPv6 better or easier

● E.g. people have told us (and stated in sunset4)
they feel it would be bad to have more IPv4
addresses available … because then people
would use them
– Some also disapprove of IPv4 address markets and

efforts to reclaim or improve utilization of legacy blocks

Deprecating IPv4?

● IETF had a long-lived WG called sunset4 which
worked on ideas to deprecate IPv4, declare it
historic, or ban IETF from doing work to
maintain it
– Stronger than existing requirements to guarantee

IPv6 compatibility in new protocols/documentation
● IETF-wide consensus failed partly due to

uncertainty on exactly what this would mean in
practice

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

