RPKI ROV

One journey
Tony Tauber
Comcast
2022
Agenda

• ROV Background
• Validating
• Publishing
BGP Security Risks

• Misconfiguration
• Malicious Actors
• Traffic doesn’t go to the right place
 • and maybe goes to the wrong place
RPKI Route Origin Validation (ROV)

• **What are these acronyms**
 • RPKI = Resource Public Key Infrastructure
 • The system
 • ROA = Route Origin Authorization
 • The main item of interest
 • ROV – Route Origin Validation
 • How it gets used – the process it enables

• **What does it do?**
 • Provides a method for the "owner" (registered user) of a prefix to assert which ASN(s) are the correct originator(s) for that prefix
 • Asserts (implicitly) that other originators are not valid
RPKI Route Origin Validation (ROV)

• What is in a ROA?
 • A signed statement consisting of:
 • prefix
 • maximum prefix length
 • originating ASN

• RPKI also has other types of objects to make it work
RPKI Route Origin Validation (ROV)

- **How does it work?**
 - The “root” assigner of all IP space (v4+v6) is IANA
 - Delegated to 5 RIRs (Regional Internet Registries)
 - ARIN, RIPE NCC, APNIC, LACNIC, AFRINIC
 - They assign further to
 - LIRs (Local Internet Registries)
 - Service Providers
 - Enterprises
 - RIR portals for address holders to generate ROAs
 - ROAs are published out by the RIR so that anyone can view them
ROAs

- RIR CA
- RIR Resource Database
- RIR Member Authentication

ROA
- 2001:db8::/32
- 192.0.2.0/24
- AS64500
Global ROV coverage

RPKI-ROV Analysis of Unique Prefix-Origin Pairs (IPv4)

Valid: 33.86%
Invalid: 0.71%
Not-Found: 65.43%

Unique P-O
TOTAL: 992,195

Valid: 335,985
Not-Found: 649,214
Invalid: 6,996

NIST RPKI Monitor: RPKI-ROV Analysis
Protocol: IPv4
RIR: All
Date: 2022-01-22 06:00

Courtesy: NIST (National Institute of Standards and Technologies)
https://rpki-monitor.antd.nist.gov/ROV
Considerations

• Fail-open model
 • Given that most of the prefixes are still not covered (i.e., “not-found”)
 • Hence absence of a covering ROA will still allow for route propagation
 • Same for complete loss of RTR connections/data at router level (more later)

• Already some large ISPs doing ROV
 • Hence invalid announcements are already getting dropped
Components

• Repositories
 • ROAs are published on servers operated by RIRs and their delegates

• Validating Caches (VC) running Relying Party (RP) software
 • Servers running validator software which fetches ROAs and other data using
 • rsync – TCP protocol for synchronizing files on servers (TCP port 873)
 • RRDP – RPKI Repository Delta Protocol which uses HTTPS as transport (newer, preferred)
 • Run cryptographic integrity checks to produce VRPs (Validated ROA Payload)
 • RPKI-to-Router (RPKI-RTR) protocol (TCP port 323 or 8323)
 • Allows for fetching VRP data by routers
 • Routers cache the data locally and refresh at intervals
 • Retain local cached data for a configurable time in case connection to cache is lost
Motivation

• Low barrier of entry
 • No new gear (features on existing routers)
 • Some VMs running freely available open-source software

• Risk of doing nothing
 • Vulnerability of mis-origination by others

• Risks of doing something
 • Collateral damage, increased complexity, new troubleshooting

• Management buy-in
 • Can’t make the case on my own just in case something goes wrong
 • “Whose idea was this anyway?”
 • Different recent incidents in the trade press helped the case
Reading (Validating) / Writing (Publishing)

• Can do one without doing the other, not necessary to do together
• Need to work as incrementally as possible
 • Can’t do things globally
 • Always have a backout plan of each (sub-)step
• Publishing
 • Hosted model: RIR publishes the data that members enter in the portal
 • e.g., ARIN Online
 • Delegated model: RIR delegates to LIR (Local Internet Registry)
 • Run own CA (Certificate Authority) and PP (Publication Point) servers
• Validating... (covered in later slides)
RPKI ROV High Level Plan

• Reading – Route Origin Validation using published ROAs
 • Add inbound route-policy to "drop invalid" after dropping bogons
 • Field trial with subset of interconnection partners in August 2020
 • Broader rollout through remainder of 2020 and early 2021

• Writing – Publishing ROAs for our own address space
 • Start with one or small number of prefixes
 • Gradually expand
Environment

• Validation – Cisco/Juniper edge routers
 • Incremental rollout
• Publication – ROA generation
 • 100 + prefixes
 • Two dozen internal ASNs
 • Thousands of more-specifics
Agenda

• ROV Background
• Validating ←
• Publishing
ROV – Route Origin Validation

• Easier to do with small risk
 • Luckily, it “fails open” – in absence of a ROA, BGP route is accepted
• Only external eBGP sessions
 • Not on sessions among our different regional ASes for instance
 • No iBGP (doesn’t even make sense)
 • Key reason: we carry many more-specifics internally
• Config per router, per neighbor
 • Easier to see if something goes wrong and back out if necessary
• Pairwise coordination with all partners is not the goal, notification is
Validating Cache Relying Party Software

- Geographic diversity
 - Deploy to two different data centers in case one has an outage
- Software diversity
 - Deploy two different codebases in case one has a problem
- Several freely available open-source options
Validating Cache Relying Party Software

• Initial choices
 • **RIPE RPKI Validator v.3** – RIPE NCC – written in Java language
 • Later replaced with **rpki-client** (with **web wrapper**) and **StayRTR**
 • **Routinator** – NLnet Labs – written in Rust programming language
• Hence, each router will have 4 different RTR servers configured
 • Deployed and managed by our DNS staff
• All have packages now, easy to install and keep updated
• Can produce metrics also for consumption
RPKI ROV infrastructure design
ROV – Bugs?

• Cisco and Juniper both had some bugs
 • Made sure to patch to the recommended versions

• RP Software has had some bugs
 • Mostly bounds-checking and the like
 • Installed fixed packages as they were released
Agenda

• ROV Background
• Validating
• Publishing ⇐
Signing and Publishing ROAs – Hosted

• Via RIR portals
 • Varying degrees of ease and integration
 • For example, publish ROAs to match existing BGP announcements

• APIs available
 • [ARIN API script](#) – Rich Compton from Charter Communications
 • Not polished but wouldn’t be possible without it!
Signing and Publishing ROAs – Delegated

• Address-issuing authority delegates to you
 • RIRs in our case, could be more layers down
 • Issues a Certificate which is used to sign ROAs and other artifacts
 • Hosts a record with URL to Publication Point (PP)

• Certificate Authority (CA) and Publisher Software:
 • Krill – NLnet Labs
 • rpki.net – Dragon Labs

• Publication point (PP) needs to be globally reachable

• Info about running own RPKI CA
 • https://www.slideshare.net/apnic/should-i-run-my-own-rpki-certificate-authority
Decision – Hosted vs. Delegated

• Delegated
 • Extra servers and software to run
 • Availability profile a bit unknown

• Hosted
 • Less of these risks....

• Went with Hosted at this point
 • Share fate with thousands of others
 • Consider revisiting at a later date
 • Hybrid model (CA internal, PP hosted elsewhere) has some appeal
Publishing – Creating ROAs

• Larger risk
 • Can create connectivity issues if something goes unreachable
 • Can take time to back out or correct
 • ROA distribution is on order of minutes to hours
 • Make sure to do it carefully

• Our complexity
 • Something over 100 address blocks
 • Almost all ARIN, a few from other RIRs
 • Distributed unevenly across more than 20 different ASes
 • Backbone, Regional, Data Center, Enterprise
Publishing – Creating ROAs Process

• Issuing ROA for largest blocks makes ROAs underneath “invalid”
 • Unless there’s a matching ROA for the more-specific already
• Gradually roll out
 • Sign few non-intrusive prefixes
 • Start from “bottom” (more-specific prefixes)
 • Once all filled in, issue ROAs for top-level blocks
• Integrate with IP management software in a later phase
• Ended up publishing several thousand ROAs (mostly IPv6)
 • Fewer blocks but so much more to break apart
Thanks!

Tony Tauber
<firstname>_<lastname>@comcast.com

(Not needing more spam from robots who should solve this robot Wordle instead.)