



## Open Edge Network Telemetry

Avi Freedman

# Agenda

- The Problem
- Open Edge Network Telemetry
- Kentik Labs
- Projects: Agents
- Problem: Telemetry Pipelines
- Projects: ktranslate
- Roadmap
- Questions

The Problem

## It's a crazy hybrid world



# Networking in 2022



# NETWORK **OBSERVABILITY**

The ability to answer *any* question about *all* your networks



### Getting to Complete Network Observability

- Getting to complete observability requires visibility across all networks
- Which adds huge challenges:
  - Getting visibility into other people's infra (cloud infra/lambda)
  - Deploying agents (eBPF, PCAP, XDP) on compute
  - Telemetry from cloud-native CNI layers
- That require different approaches -not just flow/SNMP any more!

Kentik Labs Background

## Kentik Labs

- Kentik is a 7-year old network observability company
- Kentik Labs focuses on open source projects for the wider community
- With integrations to data platforms, and orchestration and observability systems
- With first projects:
  - Telemetry bus and transformation (**ktranslate**)
  - Open agents **kappa, convis,** and **ktranslate** (eBPF, PCAP, flow/SNMP)
  - And also (not covering in this presentation):
    - K8s performance (**Odyssey**)
    - Cloud Metadata (Cloud Meta)
    - Flow visibility in Prometheus and Grafana (Kentik Lite)
    - Scalable low-level ICMP, UDP, and TCP diagnostics (**NetDiag**)
- And release other fun open projects and integrations

#### The Vision for ktranslate and agents

- An open edge network telemetry suite
- That can work with any network type and architecture
- And any data platform, both open and commercial
- And gives benefits to DevOps, Security, and other groups

Agents: kprobe, convis, and kappa

# kprobe (PCAP)

- What
- PCAP-focused traffic monitoring
- Samples via kernel primitives to do 10G+ monitoring with low CPU
- Performance instrumentation (at lower speeds) via TCP seq tracking
- Decodes for DNS, HTTP, and TLS (transport info, not decodes)
- Written in golang
- When
  - Already launched, same code base in use for years commercially
- How
- Binary / daemon
- docker run (with prometheus and grafana for standalone functionality)

# convis and kappa (eBPF)

- convis (Rust)
  - convis is an eBPF agent that runs on servers/VMs/containers
  - It tracks connections+traffic
  - And performance (via tcp\_info)
  - And correlates with pid, process name, namespace, k8s pod
- kappa (Rust)
  - Hybrid-mode agent that watches traffic via PCAP and enriches via k8s
  - Clusters in a pod so every flow has src and dst pid/container info
  - Will also monitor VMs, ip\_forwarding, and other things not on-kernel
- When
  - Convis already launched
  - kappa in use commercially, OSSing it or next gen in 2022
- How
- Binary / daemon
- docker run (with prometheus and grafana for standalone functionality)

Telemetry Bus: ktranslate

### **Telemetry Bus: Motivation**

- Early(ish) on, people used tools like samplicator for UDP-based protocols
- And/or still had platforms all polling or consuming separately from network elements
- More recently, people want to standardize on kafka but this doesn't alone solve:
  - Input and output adaptors
  - Transformation and filtering

### **Telemetry Bus: Motivation**

- Ourr goal is to build towards a distributed platform for taking all types of network telemetry and:
  - Replicating
  - Enriching
  - Filtering
  - Transforming (semantic and syntax)
  - In a scalable, operable way

## Telemetry Bus: ktranslate

- ktranslate (in golang) started taking network telemetry from Kentik with flexible output
- With active customer and partner-focused development in 2021, it can now:
- Take input in:
  - sFlow/NetFlow
  - SNMP
  - VPC Flow
  - Kentik's Cap'n Proto serialization format (kflow, and via that eBPF)
- Filter, re-sample, slice, dice, and roll up, doing:
  - Row (record) filtering
  - Column (tag/attribute) filtering
  - Rollups (to lower cardinality/TSDB)
  - Replication
- Output in/to:

Prometheus, Influx, New Relic, Kentik, Splunk, Elastic,

S3, Kafka, Dynatrace, and more

#### ktranslate Usage Examples

docker pull kentik/ktranslate:v2

docker run -p 8082:8082 kentik/ktranslate:v2

#### 

Output to Prometheus: docker run -p 8082:8082 kentik/ktranslate:v2 -format prometheus -sinks prometheus prom\_listen=:8084 -listen=0.0.0.0:8082

Output to InfluxDB: docker run -p 8082:8082 kentik/ktranslate:v2 -format influx -sinks http -http\_url= http://localhost:8086/write?db=kentik -listen=0.0.0:8082

Output as NetFlow: docker run -p 8082:8082 kentik/ktranslate:v2 -format netflow -sinks net -net\_server 127.0.0.1:9913 - max\_flows\_per\_message 10 -listen=0.0.0.0:8082

#### 

Filtered Output: docker run -p 8082:8082 kentik/ktranslate:v2 -format json -sinks stdout -filters int,l4\_src\_port,==,80 - listen=0.0.0.0:8082

Rolled-up Output: docker run -p 8082:8082 kentik/ktranslate:v2 -format json -sinks stdout -rollups unique,top\_src\_addr\_by\_count\_dst\_addr,dst\_addr,src\_addr -rollup\_top\_k 10 -rollup\_interval 60 -rollups sum,in\_bytes+out\_bytes,l4\_src\_port -rollup\_and\_alpha -listen=0.0.0.0:8082



#### Same Data Source, Multiple Destinations: Grafana



#### Same Data Source, Multiple Destinations: New Relic



21

#### Same Data Source, Multiple Destinations: Kentik



22

#### How to participate

- Download: <u>https://github.com/kentik/ktranslate</u>
- Knowledge Base: <u>https://kb.kentik.com/v0/Fc19.htm</u>
- Community-based support on github and via Discord: <u>https://discord.gg/kentik</u>

ktranslate Roadmap

## Overall Roadmap

- Our short-term road map is to extend ktranslate into a general observbaility tool, going deeper into network types but also broader in observability
- Current ktranslate focuses:
  - **Sources**: Streaming Telemetry, Router API, Router CLI, Logs, nonnetwork Metrics
  - **Destinations**: ST, SNMP API
  - **Enrichments**: Generic lookup/streaming join enrichment
  - Formats: Adding network-specific output formats
  - Transformation: Mapping ST and SNMP semantically
  - Operability
    - Telemetry for data observability of streams through ktranslate
    - k8s-based clustering for scale and core/edge deployment

#### Use Case Focus: Universal Network Metrics Translation

- The problem
  - Device metrics is a bit of a mess
  - Most networks have devices that don't support Streaming Telemetry
  - Not trivial to make sense of SNMP + Streaming Telemetry
  - In theory there's one source of truth and different semantics
  - In practice, not always (esp. cross-vendor)
  - Still requires customer or vendor work to translate

#### Use Case Focus: Universal Network Metrics Translation

- Our focus:
  - Use ktranslate to collect, translate, replicate, transform
  - From any of ST, SNMP, API, CLI
  - Sending to all systems that need it
  - Please ping us if interested in working with us! (in the open)
- Other projects:
  - Verizon's panoptes (SNMP-focused)
  - Netflix's gnmi-gateway (very ST-focused)
  - MLB's netpaca-optics (more decision logic)
  - Cisco's (Cisco-focused) Pipeline/bigmuddy: https://github.com/CiscoDevNet/bigmuddy-network-telemetry-pipeline





Questions?

Avi Freedman avi@kentik.com @avifreedman

28