
Emulating Network
Topologies in k8s

Marcus Hines (hines@google.com)
Rob Shakir (robjs@google.com)

on behalf of Google and OpenConfig

Network Topologies? k8s? WTF?

• Why? Emulating networks for fun and profit.

• What? Introducing KNE.

• How? What makes up an emulated topology?

• Huh? A real-world use case.

Disclaimer!

We’re presenting on behalf of a tonne of
talented engineers.

Thanks to all of them for their awesome
work and open source contributions.

Why? Feature Development Velocity.

● Prototyping for features that
do not depend on hardware.

● ~Infinite numbers of
topologies, at least one per
developer!

Why? Robust Repeatable Testing.

● Virtualised topologies ⇒ more reliable.

● Faster turn up.

● Easy lifecycle management for
hermetic builds.

● Ability to emulate hard to create
physical scenarios.

Why? Cross-company compliance.

● Moving compliance away from human
interpretation to code.

● Reproduction of scenarios in a
packaged way.

● Ability to plug in different vendors.

Why? Affordable testing scale.

● Many production scenarios ⇒ high lab
infrastructure cost.

● Ability to flexibly produce many
topologies.

● Production scale (and beyond)
verification possible.

What? Introducing KNE.
● Kubernetes Network Emulation.

● Goals:
○ Lightweight environment for functional, integration

and solution testing.
○ Single developer (1-10) ⇒ Large Scale (1000s+) nodes.
○ Common container lifecycle provided by k8s owned

by the node vendors.

● Simple user-facing commands tailored to network
developers.

What? Container-first Emulation.
● Lower-resource consumption.

● Fast turn up/down times.

● Clear standardised interface.

● Security.

● Still compatible with VMs if needed
(VM-in-container).

What? Leveraging K8S.

● Steal whatever we can!

● Reduction in orchestration effort -
focus on network problem.

● CNI used to build network mesh.
● Controllers used to do versioning,

upgrades, licensing.

● CRD model allows vendors to
encapsulate their specifics.

How? KNE Fundamental Concepts.

ssh: tcp/22

gnmi: tcp/9339

gribi: tcp/9340

ceos:latest

srl:latest

vxr:latest

Services - ports
exposed by
containers.

Nodes - containers
running in topology.

Links - connections
between nodes.

Implicit
management
network to host.

How? KNE Workflow.

Acquire
device
images

Define
Nodes

Define
Services

Define
Links

Deploy!

How? Defining Nodes.
nodes: {

name: "r1"

type: ARISTA_CEOS

model: "ceos"

os: "eos"

config: {

image: "ceos:latest"

config_path: "/mnt/flash"

config_file: "startup-config"

file: "r1.ceos.cfg"

}

...

}

Node type - allowing
vendor specific
handling.

Container image
name within cluster.

Specification of parameters
- allows different
personalities.

External files
available to
container.

Additional per-node
parameters.

How? Nodes with Extra Data.
nodes: {

name: "r2"

type: CISCO_XRD

...

config: {

file: "r2.iosxr.cfg"

init_image: "networkop/init-wait:latest"

image: "xrd:latest"

}

interfaces: {

key: "eth1"

value: {

name: "GigabitEthernet0/0/0/0"

}

}

Additional
parameters such as
helper containers.

Specific handling for Linux
interfaces to emulated
interfaces.

How? Nodes with Extra Data.
nodes: {

name: "r4"

type: JUNIPER_CEVO

vendor: JUNIPER

model: "cptx"

os: "evo"

services:{

key: 50051

value: {

name: "gnmi"

inside: 50051

}

}

}

Service map exposes
container services to
external endpoints.

Name key allowing mapping to
service endpoints used by test
frameworks.

Multiple external ports can be
mapped a single internal container
port.

How? Links.

links: {

a_node: "r1"

a_int: "eth1"

z_node: "r2"

z_int: "eth1"

}

A Z

Magic!
veth → gRPC!

How? A Topology.

How? A Topology.

Interfaces exposed by the
node.

Connections - A:Z pairs.

Topology visualisation -
generated from topology.

The KNE Ecosystem.

The KNE Ecosystem.

…plus any container!

Huh? What are we using KNE for?

Programmatically, repeatably validating network
deployments.

Ondatra zibethicus

ONDATRA

La
b

In
fr

a

O
nd

at
ra

 A
PI

Testbed

Config

Traffic

Operations

Telemetry

G
o

Te
st

Reservation

DUT

XConnects

ATE

Network test
logic - owned by

testing team.

Physical or virtual
resources that tests

are run on.

Framework
abstracts core

capabilities.
Bi

nd
in

g
A

PI

APIs exposed by a
specific test

environment.

Open Network Device Automated Test Runner & API

Functional / Standalone Testing

lab infrastructure

DUT
device under test

ATE
automated test

equipment

Reservation
Service

provision

ONDATRA

automate

● Simple tests that can be used to validate functionalities of
devices.

Enter… KNE!

openconfig/featureprofiles

VM

KNE

ixia-c DUT

GitHub Actions

Developer Machine

KNE

ixia-c DUT

Demo!

TDD for Network Devices

API Design Develop
Test

Reference
Implementation

Implement
production

device

Qualify and
deploy

openconfig/lemming
openconfig/magna

openconfig/public
openconfig/gnoi
openconfig/gribi

etc.

openconfig/featureprofiles

Thank you!
hines@google.com // robjs@google.com
www.openconfig.net // github.com/openconfig

