
Efficient Network Automation with
Nornir and Napalm

Neelima Parakala
Technical Marketing Engineer

AGENDA
2 Nornir - What, Why and How ?

Execute NAPALM API’s using
Nornir framework

1 NAPALM - What, Why and How ?

3

Demo4

© 2020 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

NAPALM
What, Why and How ?

Ø Network Automation and Programmability
Abstraction Layer with Multivendor support

Ø NAPALM is a vendor neutral, cross-platform
open source project that provides a unified API

Ø NAPALM is a python library that provides a set
of functions for configuration management and
operational data retrieval

Ø Cisco IOS-XR, Cisco IOS, Cisco NX-OS, Junos and
Arista EOS

Ø Other platforms supported by the community
https://github.com/orgs/napalm-automation-
community/repositories

What is NAPALM ?

NAPALM

iosxr
driver

junos
driver

eos
driver

APP

https://github.com/orgs/napalm-automation-community/repositories

Why NAPALM ?

eosjunosiosxr nxosios

NAPALM

Install
Understand
Configure

Install
Understand
Configure

Install
Understand
Configure multiple OS

Install
Understand
Configure

Install
Understand
Configure

Install
Understand
Configure

eosjunosiosxr nxosios

Before
NAPALM

After
NAPALM

Why is it important ?

Open Source 90 Contributors
30 releases
4200 commits

FREE

Well
Maintained
Documentation

Active
Community

Multivendor
Support

Easy to
Install and
Use

One Install
Configure
Multiple OS

Programmability
Python

How NAPALM works ? (1/2)

NAPALM

iosxr driver junos driver eos driver

APP

iosxr_netconf
driver

pyiosxr pyez pyeapi
ncclient

netmiko ncclient https

Ø Napalm is the base class, it defines the
abstract API names and their input (API
arguments) and output(API resultant data)
formats

Ø It has multiple drivers for the respective
operating system of the network devices

Ø These drivers implement the abstract API’s
defined in the Napalm base class

Ø Drivers use their existing packages (pyiosxr,
pyez, pyeapi etc.) to load and retrieve data
from the network devices

Ø Inheritance and Abstraction

Ø Same API’s and output dictionary across the drivers

Ø Simple data structure and type validation for dictionaries (no formal model/schema)

How NAPALM works ? (2/2)

EOS

{
"uptime": 123456,
"vendor": "Arista”,

"hostname": "localhost",
"fqdn": "localhost",
"os_version": "4.15.5M",
"serial_number": "",
"model": "vEOS",
"interface_list": [
"Ethernet1",
"Ethernet2",
"Ethernet3",
"Management1

],
}

IOS

{
"uptime": 16676160,
"vendor": "Cisco",
"hostname": "NS2903",
"fqdn": "NS2903-ASW"
"os_version": "15.0(2)”,
"serial_number": "FOC1",
"model": "WS-C2960G",
"interface_list": [

"Vlan1",
"GigabitEthernet0/1”,
"GigabitEthernet0/5”

]
}

IOS-XR

{
"uptime": 35457914,
"vendor": "Cisco",
"hostname": "edge01.tab",
"fqdn": "edge01.tab01",
"os_version": "5.3.1",
"serial_number": "FOX171",
"model": "ASR-9904-AC”,
"interface_list": [

"TenGigE0/0/0/13",
"TenGigE0/0/0/14",
"TenGigE0/0/0/24”

]
}

JUNOS

{
"uptime": 4380,
"vendor": "Juniper",
"hostname": "vsrx",
"fqdn": "vsrx",
"os_version": "12.1X4",
"serial_number": "beb91",
"model": "FIREFLY",
"interface_list": [

"ge-0/0/0",
"ge-0/0/1",
"ge-0/0/2”

]
}

NAPALM API Overview (1/2)

Functions

load_replace_candidate

load_merge_candidate

compare_config

commit_config

discard_config

confirm_commit

rollback

Configuration Data Management load_replace_candidate
or

load_merge_candidate

commit_config discard_config

compare_config

Yes No

Rollback

confirm_commit

commit done

If commit confirmed
within the revert time

If commit not
confirmed within the
revert time

NAPALM documentation

https://napalm.readthedocs.io/en/latest/

NAPALM API Overview (2/2)

Functions

get_route_to

get_snmp_information

get_probes_config

get_probes_results

traceroute

get_users

get_config

Functions

get_arp_table

get_ntp_peers

get_ntp_servers

get_ntp_stats

get_lldp_neighbors

get_lldp_neighbors_detail

get_mac_address_table

Operational Data Management
Functions

get_environment

cli

get_firewall_policies

get_ipv6_neighbors_table

get_network_instances

get_optics

ping

Functions

get_facts

get_interfaces

get_interfaces_counters

get_interfaces_ip

get_bgp_config

get_bgp_neighbors

get_bgp_neighbors_detail

NAPALM documentation

https://napalm.readthedocs.io/en/latest/

1. pip install napalm

2. Write a script to retrieve or load data

Manage configuration and operational data

How to use NAPALM Python Library ?

from napalm import get_network_driver

driver =
get_network_driver("driver_name")

device = driver(hostname="carreras",
username="device",
password= "******",

optional_args={"port":830})

device.open()
print(device.get_interfaces())

{
"TenGigE0/0/0/14": {

"is_enabled": true,
"description": "",
"last_flapped": -1.0,
"is_up": false,
"mac_address": "E0:AC:F1:64:71:52",
"mtu": 1514,
"speed": 10000

},
"TenGigE0/0/0/24": {

"is_enabled": false,
"description": "",
"last_flapped": -1.0,
"is_up": false,
"mac_address": "E0:AC:F1:64:71:5C",
"mtu": 1514,
"speed": 10000

}
}

© 2020 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Nornir
What, Why and How ?

What is Nornir ?

Ø Nornir is a network automation framework that
abstracts inventory and task execution

Ø It helps to automate your network tasks efficiently

Ø You can configure the devices, validate the operational
data, and enable the services on the provided hosts
which are part of the inventory

Ø It is multi-threaded and allows you to manage the
configuration of multiple network devices concurrently

Ø It is an open-source project, completely written in
python and easy to use

Why Nornir ?

Open Source

46 Contributors
24 releases
660 commits

FREE

Well
Maintained
Documentation

Active
Community

Multivendor
Support

Easy to
Install and
Use

One Install
Configure
Multiple OS

Programmability
Python

Multi-threaded

Why is it important ?

Ø You can develop features on top of the
Nornir framework based on your
requirement

Ø As Nornir is completely written in python, it
is easy to
Ø Install, write code
Ø integrate with other python frameworks

(Flask, Django, Pytest)
Ø troubleshoot and debug the issues using

python debug tools

Ø It reuses existing python libraries like
Netmiko and NAPALM to connect and
manage the devices

Ø The use of multithreading greatly
optimizes the execution time of the tasks

Ø You can effectively manage the hosts and
groups separately as part of the inventory

How Nornir works ?
Ø Nornir works with a collection of hosts

Ø In a network environment, this typically means
that you have a host inventory with data
associated with each node

Ø You can define tasks, and those tasks use
nornir-plugins to accomplish their work

Ø Nornir execute tasks against the devices
handling the data, concurrently and keeping
track of the errors

Nornir

Thread 1 Thread 2 Thread 3 Thread n

RT1 RT4RT2 RT3

- - - -

Python Library, e.g. NAPALM

How to use Nornir Framework ?

Ø pip install nornir

Ø Install Nornir plugin nornir-utils. It
provides plugins like inventory, functions,
processors, and tasks
Ø pip install nornir-utils

Ø Once you have all the required packages
installed, go ahead and write the code to
retrieve, configure or validate device data

Ø Create the inventory files hosts.yaml,
groups.yaml, and defaults.yaml

Ø Execute the python code to understand
the schema of the objects (hosts, groups,
defaults)

hosts.yaml

rt1:

hostname: 171.190.10.64
groups:

- iosxr

rt2:
hostname: 10.30.11.170
groups:

- ios

groups.yaml

iosxr:

platform: 'iosxr'
ios:

platform: 'ios'

defaults.yaml

username: admin
password: admin

from nornir.core.inventory import Host, Group,
Defaults
import json

print(json.dumps(Host.schema(), indent=4))
print(json.dumps(Group.schema(), indent=4))
print(json.dumps(Defaults.schema(), indent=4))

© 2020 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Execute Napalm API’s
using Nornir
framework

Pre-requisites (1/4)

Ø Install Nornir plugin nornir-napalm
Ø pip install nornir-napalm

Ø hosts.yaml

Ø groups.yaml

Ø defaults.yaml

Ø config.yaml

Ø Python main file - nornir_main.py

hosts.yaml groups.yaml

defaults.yaml

hosts.yaml

rt1:

hostname: 171.190.10.64
groups:

- iosxr
rt2:

hostname: 10.30.11.170
groups:

- ios
rt3:

hostname: localhost
platform: ‘nx-os’
username: user
password: pwd

groups.yaml

iosxr:

platform: ‘iosxr’
ios:

platform: ‘ios’
nx-os:

platform: ‘nx-os’

defaults.yaml

username: admin
password: admin

Pre-requisites (2/4)

Ø Config file provides inventory and task
concurrency information to the main file

Ø Nornir will use a different thread for
each host to concurrently execute the
tasks of the hosts

Ø You can provide the number of threads
to be used by your code in the
num_workers option of the runner
plugin

config.yaml

config.yaml

inventory:
plugin: SimpleInventory
options:

host_file:'inventory/hosts.yaml'
group_file:'inventory/groups.yaml'
defaults_file:'inventory/defaults.yaml’

runner:
plugin: threaded
options:

num_workers: 2

Pre-requisites (3/4)

Ø If num_workers == 1, and runner
plugin is serial, then tasks of the hosts
are executed sequentially

Ø Serial case helps to troubleshoot or
debug the issues

Ø Generally, you can provide a number
greater than 1 to num_workers else it
defaults to 20

config.yaml

config.yaml

inventory:
plugin: SimpleInventory
options:

host_file:'inventory/hosts.yaml'
group_file:'inventory/groups.yaml'
defaults_file:'inventory/defaults.yaml’

runner:
plugin: threaded
options:

num_workers: 2

Pre-requisites (4/4)

Ø Main file initialize Nornir with
InitNornir function and provide the
config file

Ø Call run method and provide the
tasks to be executed, here we
provided napalm_get, imported from
the nornir_napalm plugin

Ø It executes the provided napalm
getters over all the hosts provided in
the inventory and returns the results

nornir_main.py

from nornir import InitNornir
from nornir_utils.plugins.functions import
print_result
from nornir_napalm.plugins.tasks import napalm_get

nr = InitNornir(
config_file="config.yaml", dry_run=True

)

results = nr.run(
task=napalm_get, getters=["facts"]

)

print_result(results)

Execute the python file to retrieve results

Ø python nornir_main.py

Ø The output shows the facts
(napalm getter) retrieved
from the hosts provided in
the inventory

napalm_get**

* rt1 ** changed : False

vvvv napalm_get ** changed : False
vvv INFO
{ 'facts': { 'fqdn': 'pavarotti',

'hostname': 'pavarotti',
'interface_list': ['GigabitEthernet0/0/0/0',

'GigabitEthernet0/0/0/1',
'Loopback0',
'MgmtEth0/RP0/CPU0/0',

'Null0'],
'model': 'R-IOSXRV9000-CC',
'os_version': '6.5.3',
'serial_number': 'E3FDA081DAC',
'uptime': 18033322,
'vendor': 'Cisco'}}

^^^^ END napalm_get
^^

Execute the python file to retrieve results

Ø For every host, the tasks are
executed separately by a thread,
hence the results are shown per
host

Ø It returns a dictionary for each host,
with the key being the napalm getter
name and value being the result of
executing the getter method

* rt2 ** changed : False

vvvv napalm_get ** changed : False
vvv INFO
{ 'facts': { 'fqdn': 'placido.placido.local',

'hostname': 'placido',
'interface_list': ['GigabitEthernet1',

'GigabitEthernet2',
'GigabitEthernet3'],

'model': 'CSR1000V',
'os_version': 'Virtual XE Software '

'(X86_64_LINUX_IOSD-UNIVERSALK9-M),
Version 16.9.3, '

'RELEASE SOFTWARE (fc2)',
'serial_number': '9NSHRXZD4TZ',

'uptime': 43016280,
'vendor': 'Cisco'}}

^^^^ END napalm_get
^^
^^^^

Nornir-Napalm Plugins

Nornir-Napalm provides napalm
connections through which you connect to
the device and execute tasks like

Ø napalm_cli

Ø napalm_configure

Ø napalm_get

Ø napalm_ping

Ø napalm_validate

Refer https://nornir.tech/nornir/plugins/ to learn more about Nornir plugins

https://nornir.tech/nornir/plugins/

© 2020 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Demo

© 2020 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Demo

Ø NAPALM is a vendor neutral, cross-platform
open-source project that provides a unified
API to network devices

Ø NAPALM is open-source project, completely
written in python, easy to install, understand
and use

Ø Nornir is a network automation framework
with inventory management to help operate
collections of devices

Summary

Ø Nornir is multi-threaded and allows you to
manage the configuration of multiple network
devices concurrently

Ø Nornir is an open-source project, completely
written in python and easy to use

Ø Install nornir-napalm plugin of Nornir to
execute NAPALM tasks concurrently, on
multiple network devices

Ø NAPALM GitHub repository

Ø NAPALM documentation

Ø NCClient GitHub repository

Ø NCClient documentation

Ø NETCONF

Ø Netmiko GitHub repository

Ø Nornir Overview blog

Ø Nornir documentation

Ø Nornir GitHub repository

Resources

https://github.com/napalm-automation/napalm
https://napalm.readthedocs.io/en/latest/
https://github.com/ncclient/ncclient
https://ncclient.readthedocs.io/en/latest/
https://tools.ietf.org/html/rfc6241
https://github.com/ktbyers/netmiko
https://xrdocs.io/programmability/tutorials/2020-12-02-nornir-overview/
https://nornir.readthedocs.io/en/latest/
https://github.com/nornir-automation/nornir

© 2020 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Thank You

Live in your own way with the best attitude.

- Neelima Parakala

Questions?

