

Responsiveness under working conditions

Christoph Paasch <cpaasch@apple.com> Randall Meyer <rrm@apple.com> Stuart Cheshire <cheshire@apple.com>

It's all about the throughput!

- Countless tools to measure capacity
- Internet offerings are mostly focusing on capacity
- Internet evolution from 56kbps to Mbps to Gbps

It's all about the throughput!

What's wrong with traditional Latency?

- Latency measurements are unrealistic
 - Artificial protocols (ICMP ping)
 - Unreal conditions (Idle or ideal conditions)

Need for a more realistic Latency / Responsiveness measurement

Responsiveness under working conditions

Measurement Principles

- Using today's most common protocols (HTTP/2 and HTTP/3)
 - Thus, representative user-experience measurement
- Measure during "working conditions"
 - During active use of the network
 - Measures network's ability to multi-task:
 - Provide low latency while also providing high throughput
 - Measures network's agility:
 - Quickly react to changes in user-input

Measurement Methodology: Working conditions

Goals:

- Push network to its capacity limit, like any normal file transfer should
- Maintain realistic traffic scenarios
- Methodology:
 - Multiple high-throughput bulk data transfers, acting as load-generating connections
 - HTTP/2 or HTTP/3

Measurement Methodology: Responsiveness probes

Goals:

- Measure latency in different user-representative scenarios
- During working conditions
- Methodology:
 - HTTP GET requests for small (1-byte) objects
 - Measure on separate connections as well as load-generating connections
 - Collect HTTP request/response times

Responsiveness under working conditions

- networkQuality tool in macOS
- Open-source goresponsiveness
 (github.com/network-quality/goresponsiveness)
- iperf2 --bounceback
- Ookla Speedtest

Responsiveness under working conditions

Responsiveness under working conditions

What causes low responsiveness

Network-side Responsiveness

Network-side Responsiveness

- Transport protocols need to probe for capacity
- Probing fills buffers until they overflow
- Network buffers are too big

Network-side Responsiveness

Optimal operating point

Need input from network to run at optimal operating point

Amount of data in flight

L4S

- Low Latency, Low Loss, Scalable Throughput
- IETF Standard
- Mechanism:
 - Early notification on queue build-up
 - End-hosts react to keep queues
- Significant improvements in Responsiveness

L4S Interop at IETF 114, July 2022

- 15 Companies
- 7 bottleneck implementations (DOCSIS, Wi-Fi AP, 5G Emulator)
- Multiple end-host implementations
- Successful demo of ultra-low latency

What you can do

What you can do

Operators	Vendors
Measure Responsiveness in your network/equipment	
ECN friendly configuration	
Ask Vendors about L4S	Implement L4S in your equipment
Enable L4S	Participate in interop events

References

L4S: Ultra-Low Queueing - https://l4s.net

IETF L4S Architecture - https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-l4s-arch

Interop Event - https://www.cablelabs.com/event/interop-labs-l4s-october-2022

- Significant server-side contribution to responsiveness issues
- Many opportunities for over-buffering
 - Transport layer (TCP)
 - Security layer (TLS)
 - Session layer (HTTP/2)
 - Multiple termination layers (TCP-termination, TLS-termination, HTTP-termination)

User-impact of server-side responsiveness issues

- Video streaming
 - Skipping forward in movie streams
 - Adaptive Bitrate Algorithms (e.g., MPEG-DASH and HLS)
- Interleaved HTTP streams
 - Larger HTTP stream combined with shorter latency-sensitive stream
- Faster web browsing, stock quotes, weather forecasts, driving directions, ...

Improving Server-side responsiveness

- Reduce buffering at the transport layer
 - Minimize backlog of unsent data using TCP_NOTSENT_LOWAT
- Reduce buffering at the application layer
 - Above socket layer
 - Within TLS
 - Within HTTP/2
- Buffers can be everywhere!

What you can do

- Server-side responsiveness has concrete impact on user-experience
- Recommendation:
 - Configure your server with specific URLs to support responsiveness tests
 - Run responsiveness test
 - networkQuality (macOS)
 - go responsiveness (open-source)
 - Tune server buffer allocations to improve responsiveness
 - Retest

Resources

Responsiveness measurement

IETF Responsiveness Method - https://datatracker.ietf.org/doc/html/draft-ietf-ippm-responsiveness macOS networkQuality - https://support.apple.com/en-us/HT212313

Open-source responsiveness measurement - https://github.com/network-quality/goresponsiveness Server-side configurations - https://github.com/network-quality/server iperf2 bounceback - https://iperf2.sourceforge.io/iperf-manpage.html

L4S

L4S: Ultra-Low Queueing - https://l4s.net
IETF L4S Architecture - https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-l4s-arch
IETF Dual-Queue AQM -https://datatracker.ietf.org/doc/draft-ietf-tsvwg-aqm-dualq-coupled/
IETF L4S Signaling - https://datatracker.ietf.org/doc/draft-ietf-tsvwg-ecn-l4s-id/
Interop Event - https://www.cablelabs.com/event/interop-labs-l4s-october-2022

Closing Remarks

- Better responsiveness gives a better user experience
- New tools for measuring responsiveness
- New techniques to improve responsiveness
 - L4S
 - Server buffer management