
Simplified Network 
Troubleshooting through API 

Scripting
NANOG 87: February 13th, 2023

Cat Gurinsky



What we’ll cover
• Why automate our troubleshooting?
• Why API and not screen scraping? 
• Examples of typical, repeatable, troubleshooting
• Example outputs of grabbing the data via API
• What skills do I need? Who has APIs? 
• Examples of some actual code 
• Q&A



Why automate?
• “Your network is a crime scene, and you are the detective. You 

need better ways to investigate what happened, and prove guilt 
or innocence.”  
- Jeremy Schulman

• Most failures have repeatable troubleshooting steps to root 
cause. 

• Repeatable means we can automate and code against these 
expectations to find our culprit.

• Why waste time typing out the same sets of commands every 
time you have a similar failure?



Why API versus SSH/screen scraping?
• API calls are significantly faster

• A former colleague and I decided to both try our hands at writing a 
script to install an extension for a security hotfix we needed to install.

• The colleague wrote theirs with netmiko/ssh calls, mine was with 
pyeapi. 

• My script consistently ran faster than my colleagues did. We used 
mine to update the entire fleet.

• Most APIs return all the data to you in JSON, making parsing 
much easier compared to screen scraping



Typical Troubleshooting Examples
• Link down / Errors on a link
• Switch rebooted unexpectedly
• Power supply failure alert
• Dump show tech and other common outputs
• Many more possible! 



Link Down / Link Errors
• Determine both sides of the bad link, if not already known
• Validate light levels for both sides to see if there is an obvious 

failure in Tx versus Rx
• Validate rate of bouncing if applicable, and if seen by both 

sides or not.
• Grab data on optics and serial numbers in case a replacement 

is warranted



Get relevant show version / inventory 
quickly
• In case we need to swap a part or open a TAC, grabbing the 

inventory is a useful first step so we don’t have to worry about 
this later



Check for common outputs
• These are 3 common 

outputs I look at every time 
I’m checking a bad link. 

• In this example for Arista’s 
pyeapi, the first two return 
JSON, the last returns text. 
So I parse the JSON 
outputs into a nice table, 
and return the original plain 
text for the last.



Lather, Rinse, Repeat!
• In the case of bad links, I want to validate the other side, so I 

use LLDP or descriptions/inventory database if down, to see 
what the far end is and run the same command sets there.



Unexpected switch reboot
• When a switch reboots there are 2 things I always check
• Current uptime and code version of the switch (show version)
• What the switch thinks the reload reason was (show reload 

cause) 
• Sure it doesn’t take long to login and do this, but it’s just super 

fast with API instead! 



Example reload diagnostic
• Simple and to the point, with relevant data in case a TAC 

needs to be opened for follow up.
• Also if debug information was returned, we write it to a file on 

the local computer so it’s ready to go. 



Example FPGA error script output
• Sometimes switches require a reboot due to an uncorrectable 

FPGA error, quick script to validate the error is still there



Power Supply Failure
• Show inventory and grab the 

power supply section
• Show version in case TAC 

needed
• Show environment power 

details



Dump show tech & other common 
requested data for TAC
• You may find that TAC consistently asks you for the same set 

of files 
• Most of these commands (at least in Arista world) return plain 

text , you may need to strip the “\n”’s for the newlines when 
generating to a proper text file

• Use “command | json” to see if you need to request plain 
text or regular API json results. 



What skills do I need to do this?
• For my examples, a working knowledge of python and some 

time with your vendors API module to understand anything 
special about their commands.

• Most vendors have APIs and some have python modules to 
make your interactions even easier.

• My examples are Arista, other platforms have similar options 
(see last slides for useful links)

Vendor Python Module

Arista pyeapi

Juniper py-junos-eznc

Cisco No official (off box) one but plenty of user created ones 

Nokia gRPC + profobufs



JSON
• Understanding JSON (JavaScript Object Notation) formatting is 

useful as most APIs will return data to you in a JSON format
• Data is stored in name/value pairs and separated by commas
• Curly braces hold objects, square brackets hold arrays



Example code (pyeapi)
• Plan to re-use switch API bits in multiple scripts?

• Consider using a shared library file + class 
• Create your “node” aka switch device w/ pyeapi
• Timeout is optional

• For slow commands (like show tech) add this to reduce timeout errors 
in the scripts



Show inventory examples (pyeapi)
• Once you get used to the 

json formatting, finding the 
data you want is very quick. 

• On Arista, from CLI of the 
switch, you can see what 
the JSON format for the 
data looks like by typing  
command | json


• Example extracting 
inventory from sub-sections 
of the output



Show version example (pyeapi)
• Show commands come 

back with json formatting, 
so manipulating them is 
very simple

• In this example we get 
show version details and 
then manipulate them 
into a new dictionary that 
is easier to use in our 
scripts



Current uptime example
• Once we have values, like time of a last reload, it’s easy to 

use normal python to manipulate that and get values like 
uptime in days. 



Other use cases for API scripting
• We don’t have to limit ourselves to API scripting for 

troubleshooting efficiency. 
• Tedious Tasks:

• Update port descriptions based on LLDP, ARP and IPv6 Neighbor 
data (remove human error, and validate patch plans)

• Pre-upgrade flight checks (LACP on MLAG’s, lots of show commands)
• Remediation:

• Installing extensions, including Security Hot Fixes with validation of if 
they are already on the box or not

• Pushing baseline and ACL config remediations
• The possibilities are only limited by your creativity!



No API? There’s always SNMP…
• Not all devices have API available
• Next best option is probably SNMP polling (at least for errors, 

discards, link state)
• For links you’ll have to map out the OID’s for your ifDescr -> 

Errors/Discards/Bits etc
• Once logic has been written, SNMP is still a faster way to get 

this data compared to SSH screen scraping



Optimization
• Try to run your tools scripts locally to the site for the best return 

times on API, SNMP and other calls
• Cache data when possible to speed up script runs even more 

(interface names for example) 
• Some companies have Network Source of Truth (NSoT) databases 

with interfaces stored, query this first before polling the device for 
actual counters and state based information

• Create outputs formatted in the way best suited for your 
ticketing systems and tools
• Example: in one ticket system I use, I can add the following output 

around my outputs to keep it pre-formatted as a code block: 
• [code]<pre> </pre>[/code]



Security Best Practices
• Don’t save API/SSH passwords or SNMP communities hard 

coded in your scripts
• Prompt with getpass or store in secure environment variables
• Try not to write “current employer” specific code 
• Plan ahead for multi-vendor environments



What troubleshooting do you frequently 
repeat?
• I’m curious about everyone else’s use cases
• I love to talk and brainstorm on best practices
• We don’t get better by isolating ourselves, and now even more 

than before it is important for us to stay connected and share 
ideas, use cases, etc. 

• I can be reached at cat@gurinsky.net and I also sit on the 
#networktocode slack. 

• Stay tuned on https://github.com/shimamizu/ where these 
scripts will be shared later this week

mailto:cat@gurinsky.net
https://github.com/shimamizu/


Q&A



Thank you
Cat Gurinsky
cat@gurinsky.net

mailto:cat@gurinsky.net


Useful Links to Get Started
• Junos

• https://www.juniper.net/documentation/en_US/junos/information-
products/pathway-pages/rest-api/rest-api.html

• Arista EOS
• https://eos.arista.com/arista-eapi-101/
• https://www.arista.com/en/support/hands-on-training

• NX-OS
• https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000/

sw/python/api/python_api/getting_started.html
• https://developer.cisco.com/docs/nx-os/#cisco-nexus-9000-series-

python-sdk-user-guide-and-api-reference

https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/rest-api/rest-api.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/rest-api/rest-api.html
https://eos.arista.com/arista-eapi-101/
https://solutions.arista.com/ape-training
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000/sw/python/api/python_api/getting_started.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000/sw/python/api/python_api/getting_started.html
https://developer.cisco.com/docs/nx-os/#cisco-nexus-9000-series-python-sdk-user-guide-and-api-reference
https://developer.cisco.com/docs/nx-os/#cisco-nexus-9000-series-python-sdk-user-guide-and-api-reference


Useful links continued
• Cisco + Python examples:

• https://developer.cisco.com/codeexchange/github/repo/CiscoDevNet/
python_code_samples_network/ 

• Module docs
• https://junos-pyez.readthedocs.io/en/2.6.3/

• https://pypi.org/project/junos-eznc/
• https://pyeapi.readthedocs.io/en/latest/

• https://pypi.org/project/pyeapi/
• https://github.com/arista-eosplus/pyeapi 

https://developer.cisco.com/codeexchange/github/repo/CiscoDevNet/python_code_samples_network/
https://developer.cisco.com/codeexchange/github/repo/CiscoDevNet/python_code_samples_network/
https://junos-pyez.readthedocs.io/en/2.6.3/
https://pypi.org/project/junos-eznc/
https://pyeapi.readthedocs.io/en/latest/
https://pypi.org/project/pyeapi/
https://github.com/arista-eosplus/pyeapi

