Simplified Network
Troubleshooting through API
Scripting

NANOG 87: February 13th, 2023
Cat Gurinsky

What we’ll cover

Why automate our troubleshooting?

Why API and not screen scraping?

Examples of typical, repeatable, troubleshooting
Example outputs of grabbing the data via API
What skills do | need? Who has APIs?
Examples of some actual code

Q&A

NANOG

Why automate?

* “Your network is a crime scene, and you are the detective. You
need better ways to investigate what happened, and prove guilt
or innocence.”

- Jeremy Schulman

* Most failures have repeatable troubleshooting steps to root
cause.

* Repeatable means we can automate and code against these
expectations to find our culprit.

* Why waste time typing out the same sets of commands every
time you have a similar failure?

UNANOG

Why API versus SSH/screen scraping?

* API calls are significantly faster

* Aformer colleague and | decided to both try our hands at writing a
script to install an extension for a security hotfix we needed to install.

* The colleague wrote theirs with netmiko/ssh calls, mine was with
pyeapi.

* My script consistently ran faster than my colleagues did. We used
mine to update the entire fleet.

* Most APlIs return all the data to you in JSON, making parsing
much easier compared to screen scraping

UWNANOG

Typical Troubleshooting Examples

* Link down / Errors on a link

* Switch rebooted unexpectedly

* Power supply failure alert

* Dump show tech and other common outputs
* Many more possible!

TUNANOG

Link Down / Link Errors

* Determine both sides of the bad link, if not already known

* Validate light levels for both sides to see if there is an obvious
failure in Tx versus Rx

* Validate rate of bouncing if applicable, and if seen by both
sides or not.

* Grab data on optics and serial numbers in case a replacement
IS warranted

UNANOG

Get relevant show version / inventory
quickly
* In case we need to swap a part or open a TAC, grabbing the

iInventory is a useful first step so we don’t have to worry about
this later

| my-switch-hostname | DCS-7508N | 4.26.5M | HSHET2985S
e e e e +

my-switch-hostname # show inventory | inc 4/13/1

e e BRI T T B -

Hostname | Manufacturer | Model | Serial Number |
B e B oo e it +
| my-switch-hostname | Ethernet4/13/1 | KAIAM CORP | XQX5004 | BL1228888CC

Check for common outputs

These are 3 common
outputs | look at every time
'm checking a bad link.

n this example for Arista’s
pyeapi, the first two return
JSON, the last returns texi.
So | parse the JSON
outputs into a nice table,
and return the original plain
text for the last.

TUNANOG

my-switch-hostname# show interfaces counters errors

D ———m e ——— pm————— B —— B ———— D i —— D —— b
FCS | Align | Symbol | | Runts | Giants | Tx |
D ———m—— B ——— pm————— pm—————— B ———— D —— pm——————— s

| Ethernet50/1 | 4332416 | © | 330965 | 4344306 | 11890 |

T T T T e == m—————— e F————

my-switch-hostname# show interfaces transceiver
B et ET o o

| Temp(C) | Voltage

|
|
|
|
|
|
|
|
|
I
|
|
+
|
|
|
|
|
|
|
I

_____________ P —
41.06
38.41

| Ethernet50/1 | 55.75 |
l
39.65 |
|
+

| Ethernet50/2 | 55.75
| Ethernet50/3 | 55.75
| Ethernet50/4 | 55.75
B R

$——— — 4

my-switch-hostname# show interfaces Ethernet 50/1 mac detail
Current System Time: Wed Jul 22 15:28:59 2020

Ethernet50/1
Current State Changes
PHY State linkUp 44
Interface State linkUp 55
MAC Rx Local Fault False 60
MAC Rx Remote Fault False 12

+
|
|
|
|
|
|
|
i

-~

+

|
|
|
I
+

Bias Current | Tx (dBm) | Rx (dBm) |

———————— —_—
-7.59 |
-7.62 |
-7.51 |
-6.33 |

———————— —+

Last Change
3:46:28 ago
3:46:27 ago
3:46:28 ago
20:21:30 ago

Lather, Rinse, Repeat!

* |n the case of bad links, | want to validate the other side, so |
use LLDP or descriptions/inventory database if down, to see
what the far end is and run the same command sets there.

my-switch-hostname# show lldp neighbors
et o T ———— o —t

Hostname | Local Port | LLDP Neighbor | Remote Port

B o B e o -+
| my-switch-hostname | Ethernet50/1 | my-core-hostname | Ethernet3/26/1 |

Unexpected switch reboot

* When a switch reboots there are 2 things | always check
* Current uptime and code version of the switch (show version)

* What the switch thinks the reload reason was (show reload
cause)

* Sure it doesn’t take long to login and do this, but it’s just super
fast with APl instead!

UNANOG

Example reload diagnostic

* Simple and to the point, with relevant data in case a TAC
needs to be opened for follow up.

* Also if debug information was returned, we write it to a file on
the local computer so it’s ready to go.

UNANOG

Hostname: my-switch-hostname.com

Model: DCS-7010T-48-R Hardware Revision: 12.03
Serial Number: SGD22299999

0S Version: 4.22.11M

| Reload Reason The system rebooted due to a watchdog
| Recommendation This may indicate a software or hardware problem.

| Contact your customer support representative.

| Last Reboot Date (UTC) | 2022-02-01 18:47:18

| Time Since Last Reboot | 349 days, 10:25:21.296788

| Total Current Uptime | 349 days, 10:33:51.150000

B e T +
Switch online for: @ years, 11 months, 15 days, 10 hours, 25 minutes

No debug information available

Example FPGA error script output

* Sometimes switches require a reboot due to an uncorrectable
FPGA error, quick script to validate the error is still there

Hostname: my-switch-hostname.com

Model: DCS-70505X3-48YC8-R, Hardware Revision: 11.15
Serial Number: SGD22233333

0S Version: 4.22.11M

Uptime: 322 days, 5:19:48.190000

| pciFpga® Error Count
| pciFpga® First Occurence (UTC)
| pciFpga® Last Occurence (UTC)

Power Supply Failure

B e ——

| PSU Number
+ ____________

PWR-3KT-AC-RED
PWR-3KT-AC-RED
PWR-3KT-AC-RED
PWR-3KT-AC-RED
PWR-3KT-AC-RED
PWR-3KT-AC-RED

L330000000AVP
L330000000AVP
L330000000AVP
L330000000AVP
L330000000AVP
L330000000AVP

+ -+ — +

+ ____________

) ShOW inventory and grab the Hostname: my—switch—hostname.com|
power supply section S e ae

« Show version in case TAC '
needed Poer

my-switch—-hostname# show environment power

Input Output Output

Supply Model Capacity Current Current Status
* Show environment power i S G2 (L
. PWR-3KT-AC-RED - 69. -
deta”S PWR-3KT-AC-RED - Q. - Power Loss

PWR-3KT-AC-RED . 66. . 0k
PWR-3KT-AC-RED - 60. - 0k
15000W . ==

179 days, 12:43:04
179 days, 12:42:54
61 days, 21:17:42

0ffline
179 days, 12:42:34

«Q - Silo
o N N A N O G 61 days, 21:17:39

Dump show tech & other common

requested data for TAC

* You may find that TAC consistently asks you for the same set
of files

* Most of these commands (at least in Arista world) return plain
text , you may need to strip the “\n”’s for the newlines when
generating to a proper text file

 Use “command | json”to see if you need to request plain
text or regular API json results.

UNANOG

What skills do | need to do this?

For my examples, a working knowledge of python and some
time with your vendors APl module to understand anything
special about their commands.

* Most vendors have APIs and some have python modules to
make your interactions even easier.

My examples are Arista, other platforms have similar options
(see last slides for useful links)

Python Module

Arista pyeapi
Juniper py-junos-eznc

Cisco No official (off box) one but plenty of user created ones
Nokia gRPC + profobufs

UNANOG

JSON

* Understanding JSON (JavaScript Object Notation) formatting is
useful as most APls will return data to you in a JSON format

* Data is stored in name/value pairs and separated by commas
* Curly braces hold objects, square brackets hold arrays

UNANOG

Example code (pyeapi)

* Plan to re-use switch API bits in multiple scripts?
» Consider using a shared library file + class

* Create your “node” aka switch device w/ pyeapi

* Timeout is optional

* For slow commands (like show tech) add this to reduce timeout errors
in the scripts

class AristaPyeapi:
def __init__ (self, username, password, switch_hostname, logger=None, timeout=180):
self.switch_hostname = switch_hostname.strip()
self.node = pyeapi.connect(
transport="https",

host=self.switch_hostname,
username=username,
password=password,
timeout=timeout,
return_node=True,

UNANOG

Show inventory examples (pyeapi)

« Once you get used to the

json formatting, finding the

data you want is very quick.

On Arista, from CLI of the
switch, you can see what
the JSON format for the
data looks like by typing

command | json

Example extracting
inventory from sub-sections
of the output

UNANOG

def get_inventory(self, type):
inventory = self.try_eapi_command("show inventory",

if type == "interfaces":

return inventory["xcvrSlots"]
elif type == "power":

return inventory["powerSupplySlots"]
elif type == "storage':

return inventory["storageDevices"]
elif type == "system":

return inventory["systemInformation"]
elif type == "linecards":

return inventory["cardSlots"]
else:

return inventory

"enable")

Show version example (pyeapi)

def get_version(self):

* EStj()\AI (:C)rT1rT]Eir](jE; (:C)rT1€3 show_version = self.try_eapi_command("show version", "enable")

baCk Wlth jSOn fOrmattlng, switch_eos_version = show_version["version"]

switch_hardware_rev = show_version["hardwareRevision"]

SO rT]Eir]iF)L]|61tir]£J tr]EBrT] iE; switch_model = show_version["modelName"]

switch_serial_number = show_version["serialNumber"]

\/EBF}/ E;er]F)IEE switch_system_mac = show_version["systemMacAddress"]

switch_uptime = show_version["uptime"]

) Ir] tr]iss E;)(EirT]F)IEB \AIE; g;e;t if switch_eos_version.startswith(("4.19", "4.20")) is True:

switch_cli_commands = "old"

show version details and else:
switch_cli_commands = "new

then manipulate them show_version_dict = {
ir]t() Ei T1EB\AI (ji(:ti()r]Eir3/ tf1€it "eos_version": switch_eos_version,

"hardware_rev": switch_hardware_rev,

iE; EBEiE;iGBr t() use ir] our "model": switch_model,

. "serial_number": switch_serial_number,
E;(:rlF)tES "system_mac": switch_system_mac,
“"uptime": switch_uptime,
"cli_commands": switch_cli_commands,

}

return show_version_dict

UNANOG

Current uptime example

* Once we have values, like time of a last reload, it’'s easy to
use normal python to manipulate that and get values like

uptime in days.

show_version = eapi.get_version()
reload_cause = eapi.get_reload_cause()
if reload_cause["resetCauses"]:
reload_reason = reload_cause["resetCauses"][0] ["description"]

reload_timestamp = str(
datetime.datetime.utcfromtimestamp(reload_cause["resetCauses"][0] ["timestamp"])

)

now = datetime.datetime.utcnow()
then = datetime.datetime.utcfromtimestamp(
reload_cause["resetCauses"] [0] ["timestamp"]
)
difference = str(timedelta(seconds=(now — then).total_seconds()))
rel_diff = relativedelta(now, then)
reload_recommendation = reload_cause["resetCauses"][0] ["recommendedAction"]
show_version_uptime = show_version["uptime"]
‘1} N A N O G show_version_uptime = str(timedelta(seconds=show_version_uptime))

Other use cases for API scripting

We don’t have to limit ourselves to API scripting for
troubleshooting efficiency.

Tedious Tasks:

* Update port descriptions based on LLDP, ARP and IPv6 Neighbor
data (remove human error, and validate patch plans)

* Pre-upgrade flight checks (LACP on MLAG’s, lots of show commands)

Remediation:

 Installing extensions, including Security Hot Fixes with validation of if
they are already on the box or not

* Pushing baseline and ACL config remediations
The possibilities are only limited by your creativity!

UNANOG

No API? There’s always SNMP...

 Not all devices have API available

* Next best option is probably SNMP polling (at least for errors,
discards, link state)

* For links you’ll have to map out the OID’s for your ifDescr ->
Errors/Discards/Bits etc

* Once logic has been written, SNMP is still a faster way to get
this data compared to SSH screen scraping

UWNANOG

Optimization

* Try to run your tools scripts locally to the site for the best return
times on API, SNMP and other calls

* Cache data when possible to speed up script runs even more
(interface names for example)

« Some companies have Network Source of Truth (NSoT) databases
with interfaces stored, query this first before polling the device for
actual counters and state based information

* Create outputs formatted in the way best suited for your
ticketing systems and tools

 Example: in one ticket system | use, | can add the following output
around my outputs to keep it pre-formatted as a code block:

* [code]<pre> </pre>[/code]
VNANOCG

Security Best Practices

* Don’t save API/SSH passwords or SNMP communities hard
coded in your scripts

* Prompt with getpass or store in secure environment variables
* Try not to write “current employer” specific code
* Plan ahead for multi-vendor environments

UWNANOG

What troubleshooting do you frequently
repeat?

I’m curious about everyone else’s use cases
| love to talk and brainstorm on best practices

We don'’t get better by isolating ourselves, and now even more
than before it is important for us to stay connected and share

Ideas, use cases, etc.

| can be reached at cat@qgurinsky.net and | also sit on the
#networktocode slack.

Stay tuned on https://github.com/shimamizu/ where these
scripts will be shared later this week

UNANOG

mailto:cat@gurinsky.net
https://github.com/shimamizu/

Q&A

N
UNANOG

Thank you

Cat Gurinsky
cat@qurinsky.net

UNANOG

mailto:cat@gurinsky.net

Useful Links to Get Started

e Junos

« https://www.juniper.net/documentation/en_US/junos/information-
products/pathway-pages/rest-api/rest-api.html

* Arista EOS
e https://eos.arista.com/arista-eapi-101/

« https://www.arista.com/en/support/hands-on-training
. NX OS

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000/
sw/python/api/python_api/getting_started.html

« https://developer.cisco.com/docs/nx-0s/#cisco-nexus-9000-series-
python-sdk-user-guide-and-api-reference

UNANOG

https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/rest-api/rest-api.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/rest-api/rest-api.html
https://eos.arista.com/arista-eapi-101/
https://solutions.arista.com/ape-training
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000/sw/python/api/python_api/getting_started.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000/sw/python/api/python_api/getting_started.html
https://developer.cisco.com/docs/nx-os/#cisco-nexus-9000-series-python-sdk-user-guide-and-api-reference
https://developer.cisco.com/docs/nx-os/#cisco-nexus-9000-series-python-sdk-user-guide-and-api-reference

Useful links continued

* Cisco + Python examples:

* https://developer.cisco.com/codeexchange/qithub/repo/CiscoDevNet/
python code samples network/

* Module docs
* https://junos-pyez.readthedocs.io/en/2.6.3/
* https://pypi.org/project/junos-eznc/
* https://pyeapi.readthedocs.io/en/latest/
* https://pypi.org/project/pyeapi/
* https://github.com/arista-eosplus/pyeapi

UNANOG

https://developer.cisco.com/codeexchange/github/repo/CiscoDevNet/python_code_samples_network/
https://developer.cisco.com/codeexchange/github/repo/CiscoDevNet/python_code_samples_network/
https://junos-pyez.readthedocs.io/en/2.6.3/
https://pypi.org/project/junos-eznc/
https://pyeapi.readthedocs.io/en/latest/
https://pypi.org/project/pyeapi/
https://github.com/arista-eosplus/pyeapi

