API based Network Automation Orchestration

JUN-2023 Mahesh Jethanandani - Chair NETCONF WG, IETF

- Distinguished Engineer, Arrcus

Orchestration vs Automation

Source: g2.com

Motivation

- What are
 - NETCONF,
 - RESTCONF, and
 - YANG
- Landscape of YANG Models
- Tools
- Development Resources
- Conclusions & References

Facts

- 95% of network changes are manual
- Manual changes are error prone
- Expanding network at scale is a problem
 - 75 billion IoT devices by 2025

Key Drivers

- End to end management
 - Access, transport and core
- Biggest area for capex and opex reduction
 - 60 of 76 operators (survey conducted between 8/22-10/22)
- Benefits include reduction of call-centers
 - 15-20% reduction
- Agility
- Time to Market

🔷 N A N O G

Where We Need To Go

6

Best Practices Coming Together

7

- Motivation
- What are
 - NETCONF,
 - RESTCONF, and
 - YANG
- Landscape of YANG Models
- Tools
- Development Resources
- Conclusions & References

NETCONF/RESTCONF and YANG

NETCONF Protocol (RFC 6241)

- Network Management Protocol
- Distinction between configuration and state data
- Multiple configuration data stores (candidate, running, startup, operational)
- Configuration change validations and transactions
- Selective data retrieval with filtering
- Streaming and playback of event notifications

Why you should care:

NETCONF provides fundamental programming features for comfortable and robust orchestration of network services

NETCONF Transactions

Transaction Definition: the "ACID test"

- Atomicity: all-or-nothing, great for error handling
- Consistency: all-at-once, great for integrity
- Independence: no-crosstalk, great for many concurrent clients
- Durability: done-is-done, great for reliability

Introduction of transactions + SQL caused a DB industry boom in the 80's. Applications got reliable. Could run against many different DBMS'

NETCONF makes the network a distributed database

- Motivation
- What are
 - NETCONF,
 - **RESTCONF**, and
 - YANG
- Landscape of YANG Models
- Tools
- Development Resources
- Conclusions & References

RESTCONF Protocol (RFC 8040)

- Network Management Protocol
- Not intended to replace NETCONF, but rather provide an additional simplified REST interface
- Defines HTTP-based Create, Retrieve, Update, Delete (CRUD) operations
- Configuration data and state data exposed as resources
- Operations defined with YANG rpc invoked with the POST method
- Simplified transaction model

♦ N A N O G[™]

Why you should care:

RESTCONF provides a lighter-weight interface to NETCONF data stores leveraging the well known combination of HTTP and JSON/XML/CBOR

- Motivation
- What are
 - NETCONF,
 - RESTCONF, and
 - YANG
- Landscape of YANG Models
- Tools
- Development Resources
- Conclusions & References

The YANG 1.1 Language (RFC 7950)

A Data Modeling Language for Networking

- Human readable and easy to learn
- Hierarchical configuration/state data models
- Reusable types and groupings (structured types)
- Extensibility through augmentation
- Formal constraints for configuration validation
- Data modularity through modules and sub-modules
- Well defined versioning rules

Why you should care:

YANG is a full, formal contract language with rich syntax and semantics to build applications on

Service vs Infra vs Device Level Models

- Services Level Models
 - End-to-End Services
 - E-Line, E-LAN, E-Tree (MEF 58)
 - Legato
- Infra Level Models
 - Topology Models
 - Presto
- Device Level Models
 - Device Specific
 - Adagio
- https://github.com/MEF-GIT/

Network Infrastructure

- Motivation
- What are
 - NETCONF,
 - RESTCONF, and
 - YANG
- Landscape of YANG Models
- Tools
- Development Resources
- Conclusions & References

Standards Body Models

imførum

- IETF YANG models
 - ~1500 YANG Models
 - GitHub (<u>https://github.com/YangModels/yang</u>)
- BBF, IEEE, ETSI, IANA, MEF

OPENCONFIG

www.openconfig.net

- Operators-led YANG models
 - Google, AT&T, British Telecom, Microsoft, Facebook, Comcast, Verizon, Level3, Cox Communications, Yahoo!, Apple, Jive Communications, Deutsche Telekom / TeraStream, Bell Canada
 - (https://github.com/openconfig/public)
- YANG models not aligned with other SDO, e.g. IETF

VENDOR SPECIFIC MODELS

- Augmentation of Standard or OpenConfig YANG models
- Vendor Specific Features
 - Missing capabilities
 - Support existing CLI
- Not compatible with other vendor models

- Motivation
- What are
 - NETCONF,
 - RESTCONF, and
 - YANG
- Landscape of YANG Models
- Tools
- Development Resources
- Conclusions & References

Validating YANG models

- pyang
 - An extensible YANG validator written in Python. (Video training: <u>pyang</u>)
 - Can be used standalone as a validator of YANG modules, or to generate YIN, YANG, DSDL and XSD from YANG and YIN.
 - <u>https://github.com/mbj4668/pyang</u>
- libyang
 - yanglint tool to validate YANG models and examples
 - <u>https://github.com/CESNET/libyang</u>

Client tools

- Interacting with servers (NETCONF and RESTCONF)
 - netconf-client A NETCONF client for Python 3.6+.
 - ncclient Python library for NETCONF clients (ncclient.org)
 - curl command line tool and library for transferring data with URLs (curl.haxx.se)
 - Python requests the only Non-GMO HTTP library for Python (python-requests.org)
 - Postman REST(conf) requests

Orchestrators

- OpenDaylight
 - Enables auto-generation of RESTconf APIs from YANG models, with NETCONF client support
 - APIdocs feature provides a way to explore both local and mounted YANG models
- Network System Orchestrator (NSO)
- Others

N A N O G^{**}

- Motivation
- What are
 - NETCONF,
 - RESTCONF, and
 - YANG
- Landscape of YANG Models
- Tools
- Development Resources
- Conclusions & References

NANOG^{**}

NAPALM

- Network Automation and Programmability Abstraction Layer with Multivendor support
- Python 3 library
- Support for multiple vendors including Arrcus
- Template based
 - Replace device.load_replace_candidate(filename='new_good.conf')
 - Merge device.load_merge_candidate(filename='new_good.conf')
 - Commit device.commit_config()
 - Rollback device.rollback()

🔷 N A N O G"

API documentation

• Swagger Editor

	/data/openconfig- interfaces:interfaces/interface=	
GET	<pre>{interface-name}/subinterfaces</pre>	Operational state data for logical interfaces \checkmark
	/subinterface={subinterface-index}	
	/state	

Curl

curl -X 'GET' \

'http://127.0.0.1:8080/restconf/data/openconfig-interfaces:interfaces/interface=eth0
-H 'accept: application/yang-data+json'

Request UKL

http://127.0.0.1:8080/restconf/data/openconfig-interfaces:interfaces/interface=eth0/subinterfaces/subinterface=0/state?content=config&with-defaults=report-all

Server response

Description

Code

200

Operational state data for logical interfaces

Example Value Model

1	
"openconfig-interfaces:state"	: {
"index": 0,	
"name": "string",	
<pre>"description": "string",</pre>	
"enabled": true,	
"ifindex": 0,	
"admin-status": "UP",	
"oper-status": "UP",	
"last-change": 0,	
<pre>"counters": {</pre>	
"in-octets": 0,	
"in-unicast-pkts": 0,	
"in-broadcast-pkts": 0,	
"in-multicast-pkts": 0,	
"in-discards": 0,	
"in-errors": 0,	
"in-unknown-protos": 0,	
"out-octets": 0,	
"out-unicast-pkts": 0,	
"out-broadcast-pkts": 0,	
"out-multicast-akts" · 0	

Programming Resources

- libyang-cpp C++ bindings for YANG
- libyang-python Python bindings for YANG

- Motivation
- In Configuration, what are
 - NETCONF,
 - RESTCONF, and
 - YANG
- Standard, Opensource, and Vendor Models
- Management
- Tools
- Development Resources
- Conclusions & References

Conclusions

- Critical mass of models available
- Model first
 - Consistent interface between CLI and API
- Network orchestration is where dB was 30 years ago
- Services to be deployed in minutes instead of days

References

YANG Catalog
 <u>https://yangcatalog.org</u>

Thank you

13-June-2023

Backup Slides

01-JAN-2020

CLI to API

Source: itential.com

- Motivation
- In Configuration, what are
 - NETCONF,
 - RESTCONF, and
 - YANG
- Standard, Opensource, and Vendor Models
- Management
- Tools
- Conclusions & References

RESTCONF Datastores (before NMDA)

Complete and active³⁷ configuration and operational data

Beware Confusion on Information vs Data Models

Information Models

- Conceptual models
- Independent of implementations or protocols

Data Models

- Precise models
- Include protocol-specific constructs.

RFC3444 On the Difference between Information Models and Data Models

Management

• Do not forget monitoring

	SNMP	Telemetry
How it works	Polling (Pull)	Push
Protocol	UDP	UDP or TCP
Use Cases	Static data, inventory	Performance, high speed data
Benefits	Simple, widely supported	Higher rate, selective
Challenges	Pull	Can overwhelm the server

Model Driven Telemetry

Exploring and using YANG

- Editor plug-ins
 - emacs (yang-mode.el)
 - vim (yang.vim)
 - sublime text (sublime-yang-syntax)
- libsmi
 - A library allowing the generation of YANG models from SMI/SMIv2 compliant MIBs

