Design Driven Network Assurance

Jeremy Schulman @ NANOG-88

Agenda

- Background and Motivation
- Demonstration
- Design Composition
- Validating a Network
- Q & A

My hope for your takeaway:

Consider different approach towards network automation and Infrastructure as Code

Spark ideas how you approach your next project

Background and Motivation

- Any network design
- Any vendors
- Greenfield projects
- Brownfield projects
- Agile

- Multi-site enterprise network
- Multiple network vendors
- Multiple networking domains
- Complex network edge requirements
- Quickly adapt to "in field" project changes
- Challenging timelines due to external factors

Network Quality Assurance

Ensure the network is operating as expected and report any anomalies <u>with as much context</u> <u>as possible maximizing situational awareness</u>.

For any given network we define a *design* from which we automatically derive *checks*. We use these checks to validate the design against the current state of the network.

The checks are automatically recomputed when we make changes to the design

Quick Demo

Executing the design checks against the live network and reporting network assurance results

evice: sp01.swb.aaa, Total Results: 225								
Test Cases	Status	Total	Pass	Fail	Info	Skip		
ptp-system	FAILED!	1	0	1	0	0		
ptp-ports	FAILED!	29	26	3	0	0		
device	PASSED!	2	1	0	1	0		
interfaces	FAILED!	77	73	4	0	0		
transceivers	FAILED!	37	36	1	0	0		
cabling	PASSED!	8	8	0	0	0		
lags	PASSED!	3	3	0	0	0		
ipaddrs	PASSED!	17	17	0	0	0		
vlans	PASSED!	18	18	0	0	0		
switchports	PASSED!	33	33	0	0	0		

Network "Sources of Truth"

- The current operating state of the network is a source of truth
- A network design is a source of truth
 - A design may not encompass every aspect of the operating state
 - 80/20 rule and focus on most valued conditions
- A network assessment is the <u>comparison of these two truths</u>
 - Any difference represents an *anomaly*
 - Could require a change in the design
 - Could require a change in network config(s)
 - Could require a "fix" such as replacing a transceiver

What About Network Config Management?

- Network configurations are **NOT** a source of truth
 - They affect the operating state
 - <u>By-product</u> derived from design
- Real-world constraints
 - Manual changes by humans generally "break-fix"
 - Automated changes by tools different methods for generating and applying configurations

Design Composition

Network Infrastructure as Code

- What is a Design
- Design "Compiler"
- Design Reports
- Design Services

Design "Compiler"

- Builds the design and reports design errors
- Generates the checks for each device, executed later by a validation engine
- Generates reports
- Optionally generates device configurations

What is a Design?

The set of devices in a given networked together

Device	Profile	0S	Product Model	Primary IP	Managed Mode
lf01.swb.aaa lf02.swb.aaa sp01.swb.aaa string01.swb.aaa tr01.swb.aaa	Leaf01Device Leaf02Device SpineDevice StringerDevice TransitDevice	L	T.		complete complete complete complete complete

The composition of *design services* that each device uses to validate the state of the network

Service Name	Kind	Checks	Devices
ptp	PTPDesignService	ptp-ports, ptp-system	lf01.swb.aaa, lf02.swb.aaa, sp01.swb.aaa, string01.swb.aaa
topology	TopologyDesignService	cabling, device, interfaces, ipaddrs, lags, transceivers	lf01.swb.aaa, lf02.swb.aaa, sp01.swb.aaa, string01.swb.aaa, tr01.swb.aaa
vlans	VlansDesignService	switchports, vlans	lf01.swb.aaa, lf02.swb.aaa, sp01.swb.aaa, string01.swb.aaa, tr01.swb.aaa

Network Quality Assurance Matrix

	Topology	VLANs	PTP	BGP-Peer	Multicast
dev1					
dev2					
dev3					
dev4					
dev5					
dev6					
dev7					

Network Check Results ... Pass/Fail

	Topology	VLANs	РТР	BGP-Peer	Multicast
dev1					
dev2					
dev3					
dev4					
dev5					
dev6					
dev7					

"dev3" is Operating as Expected

	Topology	VLANs	РТР	BGP-Peer	Multicast	
dev1						
dev2						
dev3						
dev4						
dev5						
dev6						
dev7						

"Multicast" is Operating as Expected

	Topology	VLANs	PTP	BGP-Peer	Multicast
dev1					
dev2					
dev3					
dev4					
dev5					
dev6					
dev7					

"The Network" is Operating as Expected

	Topology	VLANs	РТР	BGP-Peer	Multicast
dev1					
dev2					
dev3					
dev4					
dev5					
dev6					
dev7					

Example Design Reports

Does the Design match the Requirements?

Design Reports:

- Reports ensure that Network Engineers can validate the network requirements at design time <u>before proceeding</u> with network configurations and deployments.
- Create cabling maps for installation teams
- Produces equipment lists of inventory assessments/ordering and pricing estimations
- Show how each port is being used within each design service context

Cabling Report

Device	Interface	Profile	Port	Remote Port	Remote Profile	Remote Interface	Remote Device
lf01.swb.aaa lf01.swb.aaa lf01.swb.aaa lf02.swb.aaa lf02.swb.aaa lf02.swb.aaa sp01.swb.aaa sp01.swb.aaa sp01.swb.aaa sp01.swb.aaa sp01.swb.aaa	Ethernet17 Ethernet18 Port-Channel2000 Ethernet17 Ethernet18 Port-Channel2000 Ethernet41 Ethernet42 Ethernet47 Ethernet48 Port-Channel1	Leaf01SpineLagMember Leaf01SpineLagMember Leaf01SpineLag Leaf02SpineLagMember Leaf02SpineLagMember Leaf02SpineLag SpineStringerLagMember SpineTransitUplink SpineTransitUplink SpineStringerLag	SFPP-10G-LR SFPP-10G-LR Virtual SFPP-10G-LR SFPP-10G-LR Virtual SFPP-10G-LR SFPP-10G-LR SFP-1G-T SFP-1G-T Virtual	SFPP-10G-LR SFPP-10G-LR virtual SFPP-10G-LR SFPP-10G-LR virtual SFPP-10G-LR SFPP-10G-LR CAT6-1G-RJ45 CAT6-1G-RJ45 virtual	SpineLeaf01LagMember SpineLeaf01LagMember SpineLeaf01Lag SpineLeaf02LagMember SpineLeaf02LagMember SpineLeaf02Lag StringerSpineLagMember StringerSpineLagMember TransitSpineUplink TransitSpineUplink StringerSpineLag	Ethernet43 Ethernet44 Port-Channel2 Ethernet45 Ethernet46 Port-Channel3 Ethernet17 Ethernet18 9 10 Port-Channel2000	sp01.swb.aaa sp01.swb.aaa sp01.swb.aaa sp01.swb.aaa sp01.swb.aaa sp01.swb.aaa string01.swb.aaa string01.swb.aaa tr01.swb.aaa tr01.swb.aaa string01.swb.aaa

Interfaces

Interfaces assigned a **Profile** - identifies various design-service features and parameters

Examples include:

- VLANs used
- IP Addresses used
- PTP port parameters
- Physical port definition

sp01.swb.aaa: 5	5 interfaces			
Name	Description	Profile	Port	Speed (Kbps)
Ethernet1	BDS-CAM01	BDSCamera	SFPP-10G-LR	10,000
Ethernet2	BDS-CAM02	BDSCamera	SFPP-10G-LR	10,000
Ethernet3	BDS-CAM03	BDSCamera	SFPP-10G-LR	10,000
Ethernet4	BDS-CAM04	BDSCamera	SFPP-10G-LR	10,000
Ethernet5	BDS-CAM05	BDSCamera	SFPP-10G-LR	10,000
Ethernet6	BDS-CAM06	BDSCamera	SFPP-10G-LR	10,000
Ethernet7	BDS-CAM07	BDSCamera	SFPP-10G-LR	10,000
Ethernet8	BDS-CAM08	BDSCamera	SFPP-10G-LR	10,000
Ethernet9	HET-PProcSRV01-HEI	HETPProcServerHEI	SFP28–25GBASE–CR	10,000
Ethernet10	HET-PProcSRV01-DATA1-1	HETPProcServerDATA	SFP28–25GBASE–CR	10,000
Ethernet11	HET-PProcSRV01-DATA2-1	HETPProcServerDATA	SFP28-25GBASE-CR	10,000
Ethernet12	HET-CtrlSRV02-HEI	HETCtrlServerHEI	SFP28–25GBASE–CR	10,000
Ethernet13	HET-CamSRV03-HEI	HETCamServerHEI	SFP28-25GBASE-CR	10,000
Ethernet14	HET-CamSRV03-DATA1-1	HETCamServerDATA	SFP28–25GBASE–CR	10,000
Ethernet15	HET-CamSRV03-DATA2-1	HETCamServerDATA	SFP28-25GBASE-CR	10,000
Ethernet16	HET-CamSRV04-HEI	HETCamServerHEI	SFP28–25GBASE–CR	10,000
Ethernet17	HET-CamSRV04-DATA1-1	HETCamServerDATA	SFP28-25GBASE-CR	10,000
Ethernet18	HET-CamSRV04-DATA2-1	HETCamServerDATA	SFP28–25GBASE–CR	10,000
Ethernet19	HET-CamSRV05-HEI	HETCamServerHEI	SFP28-25GBASE-CR	10,000
Ethernet20	HET-CamSRV05-DATA1-1	HETCamServerDATA	SFP28–25GBASE–CR	10,000
Ethernet21	HET-CamSRV05-DATA2-1	HETCamServerDATA	SFP28-25GBASE-CR	10,000
Ethernet22	HET-CamSRV06-HEI	HETCamServerHEI	SFP28–25GBASE–CR	10,000
Ethernet23	HET-CamSRV06-DATA1-1	HETCamServerDATA	SFP28-25GBASE-CR	10,000
Ethernet24	HET-CamSRV06-DATA2-1	HETCamServerDATA	SFP28–25GBASE–CR	10,000
Ethernet30	<pre>node01.c01.k3s.swb.systems.mlbinfra.net-DAT1</pre>	SysinfraServerDATA	SFP28-25GBASE-CR	25,000
Ethernet31	<pre>node01.c01.k3s.swb.systems.mlbinfra.net-DAT2</pre>	SysinfraServerDATA	SFP28–25GBASE–CR	25,000
Ethernet32	<pre>node02.c01.k3s.swb.systems.mlbinfra.net-DAT1</pre>	SysinfraServerDATA	SFP28-25GBASE-CR	25,000
Ethernet33	node02.c01.k3s.swb.systems.mlbinfra.net-DAT2	SysinfraServerDATA	SFP28-25GBASE-CR	25,000
Ethernet41	string01.swb.aaa-et17	SpineStringerLagMember	SFPP-10G-LR	10,000
Ethernet42	string01.swb.aaa-et18	SpineStringerLagMember	SFPP-10G-LR	10,000
Ethernet43	lf01.swb.aaa-et17	SpineLeaf01LagMember	SFPP-10G-LR	10,000
Ethernet44	lf01.swb.aaa-et18	SpineLeaf01LagMember	SFPP-10G-LR	10,000
Ethornot/F	1f02 cub 222 at17	Eninel esfall saMember	CEDD 10C I D	10 000

PTP Port Usage Example

PTP domain 0 41 ports from 4 devices

Port State(s)	Device	Interface	Desc	Kind
Grandmaster Slave Master	string01.swb.aaa	Ethernet8	BLANT01	BoleroAntenna
Grandmaster Slave Master	string01.swb.aaa	Ethernet9	BLANT02	BoleroAntenna
Slave Passive	lf02.swb.aaa	Port-Channel2000	sp01.swb.aaa-po3	Leaf02SpineLag
Slave Passive	sp01.swb.aaa	Port-Channel2	lf01.swb.aaa-po2000	SpineLeaf01Lag
Slave Passive	sp01.swb.aaa	Port-Channel1	string01.swb.aaa-po2000	SpineStringerLag
Passive Master	string01.swb.aaa	Port-Channel2000	sp01.swb.aaa-po1	StringerSpineLag
Passive Master	sp01.swb.aaa	Port-Channel3	lf02.swb.aaa-po2000	SpineLeaf02Lag
Master	sp01.swb.aaa	Ethernet1	BDS-CAM01	BDSCamera
Master	sp01.swb.aaa	Ethernet2	BDS-CAM02	BDSCamera
Master	sp01.swb.aaa	Ethernet3	BDS-CAM03	BDSCamera
Master	sp01.swb.aaa	Ethernet4	BDS-CAM04	BDSCamera
Master	sp01.swb.aaa	Ethernet5	BDS-CAM05	BDSCamera
Master	sp01.swb.aaa	Ethernet6	BDS-CAM06	BDSCamera
Master	sp01.swb.aaa	Ethernet7	BDS-CAM07	BDSCamera
Master	sp01.swb.aaa	Ethernet8	BDS-CAM08	BDSCamera
Master	sp01.swb.aaa	Ethernet9	HET-PProcSRV01-HEI	HETPProcServerHEI
Master	sp01.swb.aaa	Ethernet10	HET-PProcSRV01-DATA1-1	HETPProcServerDATA
Master	sp01.swb.aaa	Ethernet11	HET-PProcSRV01-DATA2-1	HETPProcServerDATA
Master	sp01.swb.aaa	Ethernet12	HET-CtrlSRV02-HEI	HETCtrlServerHEI

Design Services

Reusable building blocks

Design Services - Reusable Building Blocks

- Network Vendor/System agnostic
- Defines design *validation rules* so that we cannot build "invalid" designs
- Provides service specific *build automations*
- Defines *collections of checks* that will be generated for each device using the design service
- Can be general purpose such as "topology" and "vlans"
- Can be bespoke to enterprise specific needs

Design Automation - VLAN Port Assignments

device

Other Design Validation Examples

- Ensure both ends of a cable are "connected" somewhere
- Ensure both sides of a cable are of the same form and speed
- Ensure that transceivers are used properly
 - Designed into interfaces that have ports that require them
 - O Or vice-versa
- Ensure both sides of a BGP point-to-point session are in the same subnet

Network Validations

Is your network **operating state** running as expected?

- Validations by Design
- Physical Topology
- Device Services
- Network Wide

Anatomy of a Validation

Validations By Design-Service

Checks are <u>automatically</u> generated based on the design

Check					
Parameters	Expected Fields/Values				

- Each <u>design-service</u> defines their check collections
- When the design changes the collection of checks change
- Parameters change
- Expected results change
- Add / remove checks

"Measurement Engines" Implements Service Checks

A measurement engine represents the per-Vendor/OS + per Design-Service Check level of abstraction

IOS, IOS-XE, EOS, Junos, PyATS, SuzieQ, etc

Design Service Validation Abstraction Example

Each OS driver will implement the vlans design-service "switchports" and "vlans" checks, specific to their capabilities and access (API vs. SSH, etc)

29

Topology Design Service checks ...

- Device is reachable ... via API
- Device is the model / platform as expected
- Interfaces cabled as expected
- Interfaces using the expected transceivers
- Interface up that should be up
- Interfaces down that should be down
- Interfaces operating speed as expected (1g vs 10g)

Example - Interface Checks Failing

Device: lf01.lhv.aaa Test Logs: interfaces.json						
Status	Device	Id	Field	Log		
FAIL	lf01.lhv.aaa	Ethernet3	oper_up	FAIL oper_up SKIP speed PASS used PASS desc	<pre>{'expected': True, 'measured': False} {'expected': 1000, 'measured': 0} True 'BBR01'</pre>	
FAIL	lf01.lhv.aaa	Ethernet4	speed	FAIL speed PASS used PASS desc PASS oper_up	{'expected': 1000, 'measured': 10} True 'HET-CtrlSRV02-MGMT' True	

Example - Interface Cabling Passing

Device: lf01.lhv.aaa Test Logs: cabling.json

Status	Device	Id	Field	Log		
PASS	lf01.lhv.aaa	Ethernet1	device	PASS PASS	device port_id	'string01.lhv.aaa' 'Ethernet17'
PASS	lf01.lhv.aaa	Ethernet2	device	PASS PASS	device port_id	'string01.lhv.aaa' 'Ethernet18'
PASS	lf01.lhv.aaa	Ethernet15	device, port_id	PASS PASS	device port_id	'sp01.lhv.aaa' 'GigabitEthernet1/0/21'
PASS	lf01.lhv.aaa	Ethernet16	device, port_id	PASS PASS	device port_id	'sp01.lhv.aaa' 'GigabitEthernet1/0/22'

Example - Collecting Informational Measurements

D	Device: lf01.tol.aaa Test Logs: device.json						
	Status	Device	Id	Field	Log		
	INFO	lf01.tol.aaa	lf01.tol.aaa		mfgName modelName hardwareRevision serialNumber systemMacAddress hwMacAddress configMacAddress version architecture internalVersion internalBuildId imageFormatVersion imageOptimization bootupTimestamp uptime memTotal memFree isIntlVersion	<pre>'Arista' 'CCS-710P-16P' '11.01' '4.29.1F' '1686' '4.29.1F-29834883.4291F' '025c9e79-f2f5-4361-81ce-5fdfc4278b54' '3.0' 'Strata-4GB' 1679661446.8029 366513.29 3982416 2581316 False</pre>	

Device Network Quality Assurance

- Are VLANs on switch-ports as expected
- Are PTP port-states in the expected state
- Is there one and only one interface accepting PTP clocking
- Is the PTP clocking class the correct value
- Are all expected BGP neighbors up as expected
- Are all multicast IP sources from source-hosts as expected

Network Wide Quality Assurance

- Are all devices in the same PTP domain reporting the same PTP grandmaster ID
- Are PTP port-states correct by the rules of PTP
- Are LAG pairs reporting consistent bundling between devices
- Are routes showing up as expected across the network
- Are multicast S,G paths sources-receivers across the network as expected

Example PTP Network Wide Design Report

The design describes the expected PTP state(s) for each device and interface

Port State(s)	Device	Interface	Desc	Kind
Grandmaster Slave Master Grandmaster Slave Master Slave Passive Passive Passive Passive Master Passive Master Master Master Master Master Master	<pre>string01.lhv.aaa string01.lhv.aaa sp01.lhv.aaa lf01.lhv.aaa string01.lhv.aaa lf01.lhv.aaa lf01.lhv.aaa lf01.lhv.aaa lf01.lhv.aaa lf01.lhv.aaa</pre>	Ethernet8 Ethernet9 Port-channel2 Port-Channel1 Port-Channel2000 Port-Channel2000 Ethernet3 Ethernet4 Ethernet5 Ethernet6 Ethernet7	BLANT01 BLANT02 lf01.lhv.aaa-po2000 string01.lhv.aaa-po2000 lf01.lhv.aaa-po1 sp01.lhv.aaa-po2 BBR01 HET-CtrlSRV02-MGMT HET-CamSRV03-MGMT HET-CamSRV04-MGMT	
Master Master Master Master Master Master	lf01.lhv.aaa lf01.lhv.aaa lf01.lhv.aaa lf01.lhv.aaa lf01.lhv.aaa lf01.lhv.aaa	Ethernet8 Etherne What is Ethernet17 Ethernet18	the actual state of PT ubiquity1-port8 ubiquity2-port8	P in this network ?

Example PTP Network Wide Report

Site where PTP service is **NOT** working as expected. Report shows informational and potential corrective actions.

Service:	ervice: ptp, 5 logs					
Status	Title	Message				
PASS	Grandmaster ID	Consistent grandmaster ID 2c:dd:e9:ff:ff:fd:6b:08 across devices				
PASS	PTP port peering checks	All port-to-port peering checks PASS				
INF0	Port disabled-down	lf01.lhv.aaa, Ethernet3 port state is disabled becauase interface is down				
INF0	Port disabled-down	string01.lhv.aaa, Ethernet9 port state is disabled becauase interface is down				
FAIL	Grandmaster Port	Gradmaster device not found. Expected on: - string01.lhv.aaa: Ethernet8 - string01.lhv.aaa: Ethernet9				

Example PTP Network Wide Report

Site where PTP service is working as expected

Servi	Service: ptp, 4 logs					
Status Title		Title	Message			
PAS	SS	Grandmaster Port	Grandmaster device found connected on <pre>string01.drm.aaa, Ethernet8</pre>			
PAS	SS	Grandmaster ID	Consistent grandmaster ID 00:19:7c:ff:fe:09:8f:35 across devices			
PAS	SS	PTP port peering checks	All port-to-port peering checks PASS			
PAS	SS	Any PTP checks fail	All check results PASS.			

Design Driven Network Assurance

In Summary ...

- Design is "code" version controlled, reviewed, lifecycle
- Design checks are quality assurance tests that provide operational coverage
- Encourages behavior to keep
 Designs "up to date" by the
 nature of running the network
 by Design
- Builds skill sets to manage IaC based systems

Q&A Thank you!