

# Network Telemetry on modern routers

#### Hello

#### I'm a software engineer with passion in computer networks and CTO / co-founder of FastNetMon LTD, London, UK



# Ways to contact me

- Iinkedin.com/in/podintsov
- github.com/pavel-odintsov
- twitter.com/odintsov\_pavel
- IRC, Libera Chat, pavel\_odintsov
- pavel@fastnetmon.com



#### Disclaimer

None of the issues covered on this presentation are caused by vendor's implementation. All of them are directly or indirectly caused by design of underlying protocols or standards.



# Network telemetry on modern routers

- Netflow v5, v9
- IPFIX
- sFlow v5
- Port mirror
- Sampled port mirror (including GRE option)
- Raw headers over IPFIX or Netflow v9



# Netflow v5

# Protocol design: header

| Bytes          | Contents                 | Description                                          |
|----------------|--------------------------|------------------------------------------------------|
| 0-1            | version                  | NetFlow export format version number                 |
| 2-3            | count                    | Number of flows exported in this packet (1–30)       |
| 4-7            | SysUptime                | Current time in milliseconds since the device booted |
| 8-11,<br>12-15 | unix_secs,<br>unix_nsecs | Current count of seconds / nanosec since 1970        |
| 16-19          | flow_sequence            | Sequence counter of total flows seen                 |
| 20             | engine_type              | Type of flow-switching engine                        |
| 21             | engine_id                | Slot number of the flow-switching engine             |
| 22-23          | sampling_interval        | 2 bits sampling mode and 14 bits sampling value      |

https://www.cisco.com/c/en/us/td/docs/net\_mgmt/netflow\_collection\_engine/3-6/user/guide/format.html

# Protocol design: flows, part 1

| 0-3   | srcaddr | Source IP address                             |  |
|-------|---------|-----------------------------------------------|--|
| 4-7   | dstaddr | Destination IP address                        |  |
| 8-11  | nexthop | IP address of next hop router                 |  |
| 12-13 | input   | SNMP index of input interface                 |  |
| 14-15 | output  | SNMP index of output interface                |  |
| 16-19 | dPkts   | Packets in the flow                           |  |
| 20-23 | dOctets | Total number of Layer 3 bytes                 |  |
| 24-27 | First   | SysUptime at start of flow                    |  |
| 28-31 | Last    | SysUptime at for end of flow                  |  |
| 32-33 | srcport | TCP/UDP source port number or equivalent      |  |
| 34-35 | dstport | TCP/UDP destination port number or equivalent |  |

# Protocol design: flows, part 2

| 36    | pad1      | Unused (zero) bytes                  |
|-------|-----------|--------------------------------------|
| 37    | tcp_flags | Cumulative OR of TCP flags           |
| 38    | prot      | IP protocol type (TCP = 6; UDP = 17) |
| 39    | tos       | IP type of service (ToS)             |
| 40-41 | src_as    | ASN of the source                    |
| 42-43 | dst_as    | ASN of the destination               |
| 44    | src_mask  | Source address prefix mask bits      |
| 45    | dst_mask  | Destination address prefix mask bits |
| 46-47 | pad2      | Unused (zero) bytes                  |

#### Benefits of Netflow v5

- Supported even by very old equipment
- Simple parser implementation due to static structures
- Simple sampling rate encoding (available in each packet)



#### Issues with Netflow v5

- Official standard does not exist
- Lack of IPv6 support
- Sampling cannot exceed 1:16384 due to 14bit
- Impossible to extend due to static structures
- Flow delays in range of 1–30 seconds before export



# Netflow v9

#### Protocol design: template based

FlowSet 1 [id=0] (Data Template): 260 FlowSet Id: Data Template (V9) (0) FlowSet Length: 100 - Template (Id = 260, Count = 23) Template Id: 260 Field Count: 23 ▶ Field (1/23): PKTS ▶ Field (2/23): BYTES ▶ Field (3/23): IP SRC ADDR ▶ Field (4/23): IP\_DST\_ADDR ▶ Field (5/23): INPUT\_SNMP ▶ Field (6/23): OUTPUT SNMP ▶ Field (7/23): LAST SWITCHED ▶ Field (8/23): FIRST\_SWITCHED Field (9/23): L4\_SRC\_PORT Field (10/23): L4\_DST\_PORT ▶ Field (11/23): SRC AS ▶ Field (12/23): DST AS ▶ Field (13/23): BGP NEXT HOP Field (14/23): SRC\_MASK ▶ Field (15/23): DST MASK ▶ Field (16/23): PROTOCOL ▶ Field (17/23): TCP\_FLAGS ▶ Field (18/23): IP TOS ▶ Field (19/23): DIRECTION ▶ Field (20/23): FORWARDING STATUS Field (21/23): FLOW\_SAMPLER\_ID Field (22/23): ingressVRFID Field (23/23): egressVRFID

FlowSet 1 [id=0] (Data Template): 320 FlowSet Id: Data Template (V9) (0) FlowSet Length: 100 - Template (Id = 320, Count = 23) Template Id: 320 Field Count: 23 ▶ Field (1/23): IP SRC ADDR Field (2/23): IP DST ADDR ▶ Field (3/23): IP\_TOS Field (4/23): PROTOCOL ▶ Field (5/23): L4 SRC PORT Field (6/23): L4 DST PORT ▶ Field (7/23): ICMP TYPE ▶ Field (8/23): INPUT\_SNMP Field (9/23): SRC\_VLAN Field (10/23): SRC MASK Field (11/23): DST\_MASK ▶ Field (12/23): SRC\_AS Field (13/23): DST\_AS Field (14/23): IP\_NEXT\_HOP Field (15/23): TCP FLAGS Field (16/23): OUTPUT SNMP ▶ Field (17/23): BYTES Field (18/23): PKTS ▶ Field (19/23): FIRST SWITCHED ▶ Field (20/23): LAST SWITCHED ▶ Field (21/23): IP PROTOCOL VERSION ▶ Field (22/23): BGP\_NEXT\_HOP ▶ Field (23/23): DIRECTION



# Protocol design: sampling encoding

Cisco NetFlow/IPFIX Version: 9 Count: 1 SvsUptime: 1583525.359000000 seconds > Timestamp: Mar 17, 2022 07:32:50.000000000 GMT FlowSequence: 10488194 SourceId: 2081 FlowSet 1 [id=1] (Options Template): 257 FlowSet Id: Options Template(V9) (1) FlowSet Length: 32 • Options Template (Id = 257) (Scope Count = 1; Data Count = 4) Template Id: 257 **Option Scope Length: 4 Option Length: 16** Field (1/1) [Scope]: System Field (1/4): FLOW\_SAMPLER\_ID ▶ Field (2/4): FLOW SAMPLER RANDOM INTERVAL ▶ Field (3/4): FLOW SAMPLER MODE ▶ Field (4/4): SAMPLER NAME Padding: 0000





#### Benefits of Netflow v9, part 1

- Supported by almost all vendors
- IPv6 support
- Can carry sampling rate in any range
- Well documented and most of the implementations are reasonably close to original implementation



#### Benefits of Netflow v9, part 2

- Offers almost unlimited extensibility
- Some fields are documented as part of IPFIX RFCs



#### Issues with Netflow v9, part 1

- Complicated data encoding for collector
- Sampling encoding is complicated and vendor specific
- Issues with flow duration encoding on some vendors
- Official standard does not exist



#### Issues with Netflow v9, part 2

- Tricky encoding for dropped by BGP Flow Spec traffic
- Lack of agreement between vendors about new fields
- Limited by subset of fields selected by vendor
- Flow export delay in range of 1–30 seconds



# IPFIX

#### Protocol design: template based

Template (Id = 256, Count = 29) Template Id: 256 Field Count: 29 ▶ Field (1/29): IP SRC ADDR Field (2/29): IP\_DST\_ADDR ▶ Field (3/29): IP\_TOS Field (4/29): PROTOCOL ▶ Field (5/29): L4 SRC PORT ▶ Field (6/29): L4 DST PORT ▶ Field (7/29): ICMP\_TYPE ▶ Field (8/29): INPUT\_SNMP ▶ Field (9/29): SRC VLAN ▶ Field (10/29): SRC\_MASK ▶ Field (11/29): DST MASK ▶ Field (12/29): SRC AS ▶ Field (13/29): DST\_AS Field (14/29): IP\_NEXT\_HOP Field (15/29): TCP\_FLAGS ▶ Field (16/29): OUTPUT SNMP ▶ Field (17/29): IP TTL MINIMUM ▶ Field (18/29): IP TTL MAXIMUM Field (19/29): flowEndReason Field (20/29): IP\_PROTOCOL\_VERSION Field (21/29): BGP\_NEXT\_HOP ▶ Field (22/29): DIRECTION Field (23/29): dot1qVlanId Field (24/29): dot1qCustomerVlanId ▶ Field (25/29): IPv4 ID ▶ Field (26/29): BYTES ▶ Field (27/29): PKTS Field (28/29): flowStartMilliseconds Field (29/29): flowEndMilliseconds



# Protocol design: sampling encoding

Cisco NetFlow/IPFIX Version: 10 Length: 72 Timestamp: Feb 2, 2022 11:13:33.000000000 GMT FlowSequence: 78350 (expected 279683213) Observation Domain Id: 524288 • Set 1 [id=3] (Options Template): 512 FlowSet Id: Options Template (V10 [IPFIX]) (3) FlowSet Length: 56 • Options Template (Id = 512) (Scope Count = 1; Data Count = 10) Template Id: 512 Total Field Count: 11 Scope Field Count: 1 Field (1/1) [Scope]: FLOW EXPORTER Field (1/10): TOTAL PKTS EXP Field (2/10): TOTAL FLOWS EXP Field (3/10): systemInitTimeMilliseconds Field (4/10): exporterIPv4Address Field (5/10): exporterIPv6Address Field (6/10): SAMPLING INTERVAL Field (7/10): FLOW ACTIVE TIMEOUT Field (8/10): FLOW INACTIVE TIMEOUT Field (9/10): collectorProtocolVersion Field (10/10): collectorTransportProtocol



#### **Benefits of IPFIX**

- Well documented RFC standard
- IPv6 support
- Unlimited flexibility



#### Issues of IPFIX

- Complicated encoding for collector
- Tricky encoding for dropped by BGP Flow Spec traffic (some vendors)
- Many vendors still do not support it
- Limited by subset of fields selected by vendor



# sFlow

# Protocol design: meta plus header

```
class __attribute__((__packed__)) sflow_sample_header_t {
   public:
   uint32_t sample_sequence_number = 0; // sample sequence number
   union __attribute__((__packed__)) {
       uint32_t source_id_with_id_type{ 0 }; // source id type + source id
       uint32_t source_id : 24, source_id_type : 8;
   };
   uint32_t sampling_rate{ 0 }; // sampling ratio
   uint32 t sample pool{ 0 }; // number of sampled packets
   uint32_t drops_count{ 0 }; // number of drops due to hardware overload
   uint32_t input_port{ 0 }; // input port + 2 bits port type
   uint32_t output_port{ 0 }; // output port + 2 bits port type
   uint32_t number_of_flow_records{ 0 };
```



#### Benefits of sFlow v5

- Almost instant export (< 1 second)
- Provides access to packet header
- Simple sampling encoding



#### Issues with sFlow v5, part 1

- Sampling rate control is broken on almost all vendors
- Sampling rate selection process is tricky to grasp
- Traffic parsing is complicated and very hard to do in secure manner (IPv6 headers, MPLS, QnQ)



#### Issues with sFlow v5, part 2

- Lack of useful meta information (MPLS tags, VRF IDs, next hop)
- Long list of constraints and limitations from routers side (lack of LAG support for example)



# Port mirror

### Benefits of port mirror

- Complete access to all information in packet
- Supported by almost any router



# Issues of port mirror

- Requires a lot of CPU time for collector to parse traffic
- Lack of meta information (ASN, VRF IDs, source and destinations ports)
- Requires spare ports on router
- Requires high performance network cards on collector



# Sampled port mirror

### Benefits of sampled port mirror

- Requires less port capacity
- Requires way less CPU on collector
- No need in high performance NICs



# Issues of sampled port mirror

- Many vendors do not support it
- No way to get sampling rate, needs static setup
- Lack of meta information (ASN, VRF IDs, source and destinations ports)
- GRE requires MTU tuning to deliver 1500b+ packets



# Payload via IPFIX or Netflow v9

### IPFIX as transport for traffic headers

```
Cisco NetFlow/IPFIX
  Version: 10
  Length: 158
Timestamp: Oct 25, 2021 21:59:05.000000000 BST
  FlowSequence: 7102
  Observation Domain Id: 16842752
v Set 1 [id=384] (1 flows)
    FlowSet Id: (Data) (384)
    FlowSet Length: 142
     [Template Frame: 109 (received after this frame)]
  - Flow 1
       InputInt: 577
       OutputInt: 0
       Direction: Ingress (0)
       Data Link Frame Size: 1514
     Data Link Frame Section: c8fe6a882418002cc83c850
```



### IPFIX options as transport for sampling

```
Cisco NetFlow/IPFIX
   Version: 10
    Length: 36
  Timestamp: Mar 31, 2022 11:13:50.000000000 BST
  FlowSequence: 28436 (expected 0)
    Observation Domain Id: 16842865
  Set 1 [id=3] (Options Template): 640
      FlowSet Id: Options Template (V10 [IPFIX]) (3)
      FlowSet Length: 20
    • Options Template (Id = 640) (Scope Count = 1; Data Count = 1)
        Template Id: 640
        Total Field Count: 2
        Scope Field Count: 1
       Field (1/1) [Scope]: FLOW_EXPORTER
       Field (1/1): SAMPLING_INTERVAL
      Padding: 0000
```

**N** A N O G<sup>\*</sup>

# Benefits of payload over IPFIX / Netflow

- That best and most capable protocol on market
- Almost instant traffic delivery
- Well defined format for sampling rate encoding
- Provides all information available in header
- Provides meta information (interface numbers, direction)
- Can be extended easily



# Issues with payload over IPFIX / Netflow

- Only few vendors support it
- Extremely high complexity of integration for collector side
- Limited by set of fields provided by vendor





# THANKS!

pavel@fastnetmon.com
linkedin.com/in/podintsov