
Network
Telemetry on

modern routers

Hello
I’m a software engineer with passion in
computer networks and CTO / co-founder of
FastNetMon LTD, London, UK

Ways to contact me

● linkedin.com/in/podintsov
● github.com/pavel-odintsov
● twitter.com/odintsov_pavel
● IRC, Libera Chat, pavel_odintsov
● pavel@fastnetmon.com

Disclaimer

None of the issues covered on this
presentation are caused by vendor’s
implementation. All of them are directly or
indirectly caused by design of underlying
protocols or standards.

Network telemetry on modern routers

● Netflow v5, v9
● IPFIX
● sFlow v5
● Port mirror
● Sampled port mirror (including GRE

option)
● Raw headers over IPFIX or Netflow v9

Netflow v5

Protocol design: header

https://www.cisco.com/c/en/us/td/docs/net_mgmt/netflow_collection_engine/3-6/user/guide/format.html

Bytes Contents Description
0-1 version NetFlow export format version number
2-3 count Number of flows exported in this packet (1-30)

4-7 SysUptime
Current time in milliseconds since the device
booted

8-11,
12-15

unix_secs,
unix_nsecs

Current count of seconds / nanosec since 1970

16-19 flow_sequence Sequence counter of total flows seen

20 engine_type Type of flow-switching engine

21 engine_id Slot number of the flow-switching engine
22-23 sampling_interval 2 bits sampling mode and 14 bits sampling value

Protocol design: flows, part 1
0-3 srcaddr Source IP address

4-7 dstaddr Destination IP address

8-11 nexthop IP address of next hop router

12-13 input SNMP index of input interface

14-15 output SNMP index of output interface

16-19 dPkts Packets in the flow

20-23 dOctets Total number of Layer 3 bytes

24-27 First SysUptime at start of flow

28-31 Last SysUptime at for end of flow

32-33 srcport TCP/UDP source port number or equivalent

34-35 dstport TCP/UDP destination port number or equivalent

Protocol design: flows, part 2
36 pad1 Unused (zero) bytes

37 tcp_flags Cumulative OR of TCP flags

38 prot IP protocol type (TCP = 6; UDP = 17)

39 tos IP type of service (ToS)

40-41 src_as ASN of the source

42-43 dst_as ASN of the destination

44 src_mask Source address prefix mask bits

45 dst_mask Destination address prefix mask bits

46-47 pad2 Unused (zero) bytes

Benefits of Netflow v5

● Supported even by very old equipment
● Simple parser implementation due to static

structures
● Simple sampling rate encoding (available in

each packet)

Issues with Netflow v5

● Official standard does not exist
● Lack of IPv6 support
● Sampling cannot exceed 1:16384 due to 14bit
● Impossible to extend due to static structures
● Flow delays in range of 1-30 seconds before

export

Netflow v9

Protocol design: template based

Protocol design: sampling encoding

Benefits of Netflow v9, part 1

● Supported by almost all vendors
● IPv6 support
● Can carry sampling rate in any range
● Well documented and most of the

implementations are reasonably close to
original implementation

Benefits of Netflow v9, part 2

● Offers almost unlimited extensibility
● Some fields are documented as part of IPFIX

RFCs

Issues with Netflow v9, part 1

● Complicated data encoding for collector
● Sampling encoding is complicated and vendor

specific
● Issues with flow duration encoding on some

vendors
● Official standard does not exist

Issues with Netflow v9, part 2

● Tricky encoding for dropped by BGP Flow Spec
traffic

● Lack of agreement between vendors about
new fields

● Limited by subset of fields selected by vendor
● Flow export delay in range of 1-30 seconds

IPFIX

Protocol design: template based

Protocol design: sampling encoding

Benefits of IPFIX

● Well documented RFC standard
● IPv6 support
● Unlimited flexibility

Issues of IPFIX

● Complicated encoding for collector
● Tricky encoding for dropped by BGP Flow

Spec traffic (some vendors)
● Many vendors still do not support it
● Limited by subset of fields selected by vendor

sFlow

Protocol design: meta plus header

Benefits of sFlow v5

● Almost instant export (< 1 second)
● Provides access to packet header
● Simple sampling encoding

Issues with sFlow v5, part 1

● Sampling rate control is broken on almost all
vendors

● Sampling rate selection process is tricky to
grasp

● Traffic parsing is complicated and very hard to
do in secure manner (IPv6 headers, MPLS, QnQ)

Issues with sFlow v5, part 2

● Lack of useful meta information (MPLS tags,
VRF IDs, next hop)

● Long list of constraints and limitations from
routers side (lack of LAG support for example)

Port mirror

Benefits of port mirror

● Complete access to all information in packet
● Supported by almost any router

Issues of port mirror

● Requires a lot of CPU time for collector to
parse traffic

● Lack of meta information (ASN, VRF IDs,
source and destinations ports)

● Requires spare ports on router
● Requires high performance network cards on

collector

Sampled port
mirror

Benefits of sampled port mirror

● Requires less port capacity
● Requires way less CPU on collector
● No need in high performance NICs

Issues of sampled port mirror

● Many vendors do not support it
● No way to get sampling rate, needs static

setup
● Lack of meta information (ASN, VRF IDs,

source and destinations ports)
● GRE requires MTU tuning to deliver 1500b+

packets

Payload via IPFIX
or Netflow v9

IPFIX as transport for traffic headers

IPFIX options as transport for sampling

Benefits of payload over IPFIX / Netflow

● That best and most capable protocol on market
● Almost instant traffic delivery
● Well defined format for sampling rate encoding
● Provides all information available in header
● Provides meta information (interface numbers,

direction)
● Can be extended easily

Issues with payload over IPFIX / Netflow

● Only few vendors support it
● Extremely high complexity of integration for

collector side
● Limited by set of fields provided by vendor

THANKS!
● pavel@fastnetmon.com
● linkedin.com/in/podintsov

