

RPKI Adoption and Routing Security in North America & Caribbean

Carolina Caeiro & Mark McFadden

About the Project

- ARIN Community Grant Program
- Showcase data on RPKI adoption in the ARIN region
- Value added:
 - Geographic data
 - Report with live indicators
 - Platform to do your own analysis

Today's Presentation

- ARIN in Context
- North American Deep Dive
- Invalids Deep Dive
- Methodology + other ways of thinking of routing security?
- Next steps

ARIN in Context: Global Coverage

ARIN in Context: ARIN / Global Coverage

Global	Coverage by RIR - IPv4	
RIR	PROTECTED \downarrow	UNPROTECTED
arin	28.18% 86520	71.82% 220511

Global Coverage by RIR - IPv6				
RIR	PROTECTED \downarrow	UNPROTECTED		
arin	52.23% 20732	47.77% 18965		

ARIN in Context: Global Validation Results

ARIN in Context: ARIN /Global Validation Results

Global Validation Results by RIR - IPv4

RIR	VALID \downarrow	INVALID	NOT FOUND
arin	26.41%	1.77%	71.82 %
	81082	5438	220511

Global Validation Results by RIR - IPv6

RIR	VALID \downarrow	INVALID	NOT FOUND
arin	47.53%	4.7%	47.76 %
	18866	1866	18965

Deep Dive - Results per country

2A: Coverage per Country **Ipv4** Protection PROTECTED ↓ COUNTRY NAME UNPROTECTED 0% - 0 Saint Pierre and Miguelon 100% - 18 PM VC Saint Vincent and the Grenadines 95.83% - 23 4.17% - 1 94.48% - 137 5.52% - 8 MO Martinique **IPv6 Protection** PROTECTED ↓ COUNTRY NAME UNPROTECTED Martinique 100% - 3 0% - 0 MQ 100% - 2 0% - 0 KN Saint Kitts and Nevis 0% - 0 VC Saint Vincent and the Grenadines 100% - 2

Deep Dive - Results per country

2B: Validation results per Country

IPv4 Validity

COUNTRY	NAME	VALID \downarrow	INVALID	NOT FOUND
РМ	Saint Pierre and Miquelon	100% - 18	0% - 0	0% - 0
vc	Saint Vincent and the Grenadines	95.83% - 23	0% - 0	4.170000000000002% -
MQ	Martinique	93.1% - 135	1.38% - 2	5.520000000000006% -

Ipv6 Validity

COUNTRY	NAME	VALID \downarrow	INVALID	NOT FOUND
MF	Saint Martin (French part)	100% - 1	0% - 0	0% - 0
KN	Saint Kitts and Nevis	100% - 2	0% - 0	0% - 0
vc	Saint Vincent and the Grenadines	100% - 2	0% - 0	0% - 0

Ability to perform your own personalized queries

North America Deep Dive – Canada

- 37.73% of routes have valid VRPs (validated ROA payload) (8,685) – IPv4
- 35.42% for IPv6, IPv6 takeup in not high in Canada, less IPv6 valid VRPs than US (53.42%)
- Invalids are less than 0.9% in both IPv4 and IPv6

North America Deep Dive – United States

- 24.75% of routes have valid VRPs (77,531) –
 IPv4
- 54.42% for IPv6, which shows large deployment of IPv6 and RPKI for those prefixes
- Invalids are less than 2% in IPv4, 4.31% in IPv6
- Impressive given the number of VRPs
- Much more common in the US to have multiple invalids for a single AS
- Protected prefix sizes range from /24s to /12s

Deep Dive – Contrasting with the Caribbean (1)

In the Caribbean Region there are four distinct groups

- 1. Those with significant deployment (>50%)
- 2. Those with moderate deployment (20-50%)
- 3. Those with little deployment (1-20%)
- 4. Those with no deployment

Deep Dive – Contrasting with the Caribbean (2)

Is this IPv4 specific?

• Intriguingly, the only difference is that ALL of the IPv6 deployment in those who are in the "little deployment" group for IPv4 have NO deployment for IPv6.

Deep Dive – Contrasting with the Caribbean (3)

- Invalids is almost vanishingly small. Why?
 - 1. The number of routes covered is naturally small compared to larger North American countries
 - 2. The pattern of deployment is specific to individual ISPs and the data suggests that some ISPs make configuration errors

Invalids in the ARIN region

- What About Invalids? Are these configuration problems or actual abuse?
- Pattern 1:
 - A number of ASes are covered per prefix, but something goes wrong with one of the prefixes in the AS
 - We see this pattern often in the data

Invalids in the ARIN region

- Pattern 2:
 - Isolated invalids: where a single AS is covered per prefix but something goes wrong with a single, isolated prefix
- Pattern 3:
 - Duplicated records: more than one AS allocated to a unique prefix

Case Study: Canada

- ISP also configuring one VRP for every /24
 - 10.1.102.0/24
 - 10.1.234.103.0/24
 - 10.1.234.104.0/24
- However, for the first /24, multiple VRPs cover the same Route Prefix, but one is invalid and the other is valid
- Allocation of all three ranges is to an IP broker – configuration error?

Case Study: British Virgin Islands

- ISP configuring one VRP for every /24
 - 10.1.145.0/24
 - 10.1.146.0/24
 - 10.1.147.0/24
- ASN: a single ASN
- However, for the first /24, one VRP Covers the Route Prefix, but no VRP ASN matches the route origin ASN
- Looks like configuration error, not abuse

Case Study: Puerto Rico

- ISP also configuring one VRP for every /24
 - 10.1.224.0/24
 - 10.1.225.0/24
 - 10.1.226.0/24
 - 10.1.227.0/24
- ASN: various, different for every prefix
- However, for the third /24, one VRP Covers the Route Prefix, but once again, no VRP ASN matches the route origin ASN

Methodology

- Data Sources and Validation
 - RouteViews for raw BGP Data 6
 vantage points, 94% coverage
 - Routinator for Route Origin Validation
 - RIR Public Stats Files for geoinformation
- Cross referencing with NIST and MANRS

RPKI by end nodes protected?

The unit of measure for this presentation is "Source/Destination Address Pairs protected by a VRP." That is consistent with other studies and with the work at NIST.

Would another interesting metric be the "total number of IP addresses served in routes protected by a VRP?"

Next Steps

- Online report with live indicators available: https://dnsrf.org/research/rpki/about/
- Forthcoming blog article for ARIN with some of the reflections from today

Interested in analyzing the data?

 Sign up for an account with DAP.LIVE: https://dnsrf.org/ carolina.caeiro@dnsrf.org/