
Building and expanding the bgp.tools
realtime BGP collector

Ben Cartwright-Cox - NANOG 89 (2023)

d6253275ab09f7afeaca74955a6cd164

Quick overview of bgp.tools

ASN Info

Prefix Data (+DNS)

Global Looking Glass

IXP Info Pages

IXP Info Pages

Traceroutes/Looking Glass/Agents
You need a bgp.tools (free) +
RIPE Atlas account for this

This is a GIF, S
orry

 PDF users!

Network Ranking

Can be ranked by Global or
ASN Country using:

● Peer Count (*)
● AS Cone
● Eyeball Population
● Domain Records
● IPv4/IPv6 space

originated

* is improved by feeding bgp.tools BGP data

https://bgp.tools/rankings/MX?sort=cone

Core points

● Bgp.tools was built out of the frustration I had with similar tools
● Practically realtime BGP data, updates fast enough to use as live feedback
● The horrors of WHOIS is handled, and in some cases is updated in near real time
● Most data is frequently updated:

○ ICMP Ping data scans of IPv4 /0
○ IPv4 and IPv6 RDNS data
○ Forward DNS data (Looking what A or AAAA records point to a prefix)

● Peering IXP data is provided:
○ Like what people are sending to Route Servers
○ What vendors they are running on the exchange
○ If they are doing (very) remote peering on the exchange

Making the bgp.tools I want possible

Challenges running bgp.tools

Getting low latency and accurate BGP data to use

Building a scalable system to avoid being picky on
feeds

Collecting relevant data

Not going bankrupt

The inner runnings of bgp.tools

● Most critically BGP path data

birdc s ro 80.80.80.0/24 all
BIRD 2.0.7 ready.
Table master4:
80.80.80.0/24 unicast [transit4_velox_2 2023-09-19] * (100) [AS60679i]

via 193.35.59.46 on eno1.601
Type: BGP univ
BGP.origin: IGP
BGP.as_path: 3170 6461 7385 30247 60679
BGP.next_hop: 193.35.59.46
BGP.local_pref: 10
BGP.community: (60945,0) (60945,5459) (65532,400)

Standard BGP data sources

DIY?

Using public data sources

● RIPE RIS (RIS) and RouteViews (RV) export MRT dumps
○ MRT Dumps come in two types, a RIB (aka a full table dump) and "messages" (a copy of all

BGP messages in the last 15 mins
○ Table dumps are done 4 to 8 hours, message files are provided every 15 mins

■ (Most of the time)

● Bgp.tools started in 2018 by using RIS and RV MRT table dumps.
○ I quickly learned the quirks of using RIS and RV as "Production" data sources…

RIS and RV quirks to control for

● Table dumps
○ Only show up every 4 - 8 hours
○ Make it hard to remove individual sessions that are known to be bad

● Message dumps (never used by bgp.tools production in the end)

○ If a message file never shows up, you have to wait until the next dump file (4 - 8 hours) before
becoming reliability in sync again.

○ People "UPDATE flood" collectors by mistake, making these archives sometimes huge and a
pain to decode

● General
○ Huge bias to AS6939 (HE)
○ They are on almost all of the large IXPs, and provide you 180k+ of peered v4 routes that will

likely be preferred over transit, hiding transit paths from the collector

Going beyond RIS and RV

● Eventually in 2021 after a number of issues with MRT files from RV and RIS
bgp.tools started to build its own route collector

○ Issues like moderation, bad data, stuck routes
○ Reducing site data latency to be less than 8 hours behind with message files would be the

same effort as building my own collector
● Decided that a multihop eBGP only collector was viable to start with

● It was clear that no "normal" BGPd was going to work for the scale I wanted,
a custom suite of bgp software needed to be written

● Bootstrapped with a live copy of the NLNOG Ring route collector:
https://lg.ring.nlnog.net/

https://lg.ring.nlnog.net/

"neo-bgp"

A purpose built "bgpd" for the exact use case that bgp.tools wants

"neo-bgp"

● Each BGP Session is in it's own process
○ PIDs crash independently, memory per

process is manageable
○ Upgrades can happen on a single BGP

session at a time
○ Entire system scales to as many CPU

cores as your system has
● No need to implement router-useful

functions
○ Bgp.tools is only interested in getting BGP

paths and AS summary computations as
fast as possible

● Feature implementation moves to the
bgpd, not a polling worker over N many
sessions

"neo-bgp"
● Bgp.tools currently sits at 1360~ BGP

sessions
○ 750~ full IPv4 tables
○ 1210~ full IPv6 tables
○ 1,000,000,000+ BGP Paths stored in RAM

● Hardware is modest, entire site operates
inside ¼ cab with room to spare

○ 512G DDR4 per machine
○ 32~ cores per machine
○ 3 active machines right now, 3 available to

turn on (when I want to pay for power)
● Running bgp.tools on a cloud provider

would cost around $12k USD a month
○ In reality it costs 15-20x less than that in

colo

Challenges running bgp.tools

Getting low latency and accurate BGP data to use

Building a scalable system to avoid being picky on
feeds

Collecting relevant data

Not going bankrupt

● The site is funded by offering
rapid BGP/IRR/RPKI
monitoring (and historical
searching on your own feeds)

● The neo-bgp architecture
allows me to send alerts as
fast as I can get data for
them!

● There are a bunch of other
paid user features, but I don't
want to turn this into a major
sales pitch

"neo-bgp"

Challenges running bgp.tools

Getting low latency and accurate BGP data to use

Building a scalable system to avoid being picky on
feeds

Collecting relevant data

Not going bankrupt

Internet Exchange Route Collection

Status Quo

● Most of the RIS / RouteViews
collectors live on internet
exchanges

● This has some advantages,
as networks can peer with
route collectors over shared
L2 fabrics

Issues with IXP route collection

● RIPE RIS has ~1535 BGP sessions online,
○ But 372 / 407 Full IPv4/IPv6 tables
○ (by their own calculations)
○ 372 + 407 = 779. Far off the 1535 total session count
○ Many people peer with RIS, but only send their customer routes

■ This is not entirely helpful…

Other problems with IXP Route Collection

● Really expensive if you don't have friends
○ IXP Membership fees + XC fees + colo fees
○ IXP membership alone can be more than the last two
○ https://peering.exposed

○ Even if the IXP can be done for free, the power to
power the machine or transport to another place is
likely also non trivially expensive

https://peering.exposed

Getting creative to solve for XC Fees / Colo

● What is the cheapest, smallest, most insane thing we could
ship to a willing IXP?

● What is the cheapest, smallest, most insane thing we could
ship to a willing IXP?

https://blog.benjojo.co.uk/post/smart-sfp-linux-insidehttps://blog.benjojo.co.uk/post/smart-sfp-linux-inside

Getting creative to solve for XC Fees / Colo

https://blog.benjojo.co.uk/post/smart-sfp-linux-inside
https://blog.benjojo.co.uk/post/smart-sfp-linux-inside

● What is the cheapest, smallest, most insane thing we could
ship to a willing IXP?

● No XC, The switch is the power supply, you
can hitch backhaul either via someone
friendly on the IXP, or relaying via a VPS or
something

● Cheap, Around 150 USD all in
● Single core ARMv7, with 512M of RAM

running Debian Jessie
● Completely crazy. Everyone is going to look

at you like you lost the plot!
● Made by a Russian/Dubai company since

the Russian Invasion of Ukraine

https://blog.benjojo.co.uk/post/smart-sfp-linux-inside

Getting creative to solve for XC Fees / Colo

https://blog.benjojo.co.uk/post/smart-sfp-linux-inside

Creative solutions are available

Creative solutions are available

● Runs a 400Mhz~ 32bit MIPS core, 32MB of RAM
● The constrained RAM and MIPS CPU µArch makes this a challenge to

program for
● Thankfully Zig lang has a mostly working MIPS target!
● To use as a generic "Linux box" you must perform some software changes
● Vendor has been really keen and helpful with modding these

● Similar tech is available via Huawei/Nokia/FS.COM (they share a chipset and
design) for 80 USD~ per optic

The actual preference tree

1. Some IXPs have VM infrastructure on the exchange that is easy to
use, bgp.tools can run a relay in 128MB of RAM and very low CPU
requirements

2. Those magic Linux optics are easy and convenient to ship around
○ But are mildly scary for some, also 1G only, and IXPs are sunsetting 1G ports

3. At worst I can ship physical 1U hardware around
○ Ideally want to try and land as many IXPs in a single machine to conserve funds

All sessions lead back to London

● You have have noticed it isn't really possible to store a modern full internet
table on 32MB of RAM.

● Instead of storing sessions locally, the local collector will "rehost" the BGP
session back in London where all of the website infrastructure is.

● This is because with how bgp.tools is designed, all BGP data has to be within
3ms~ of the web server to ensure a enjoyable experience

Current Deployments
● JINX, DINX, CINX, NMBINX
● ONIX, QIX
● NL-IX, INTERIX, Frys-IX
● BCIX, Stuttgart-IX, DE-CIX {FRA,DUS,LEJ,HAM,MUC}
● RomandIX
● LONAP
● PIT-IX, DE-CIX { New York, Dallas, Chicago, Richmond, Phoenix }
● BIX.BG
● DE-CIX {Madrid, Barcelona}
● DE-CIX Marseille
● DE-CIX Palermo
● LU-CIX
● SOX Serbia
● MSK-IX Moscow
● DE-CIX Istanbul
● DE-CIX Lisbon

In the pipeline:
● IX.BR (?)
● THINX WAW
● SF-MIX (?)
● STH-IX (?)
● NIX.CZ
● Interlan
● FIXO (?)

Bgp.tools is always looking for better
visibility into IXPs!

Do you run a IXP not listed here?
admin@bgp.tools

Challenges running bgp.tools

Getting low latency and accurate BGP data to use

Building a scalable system to avoid being picky on
feeds

Collecting relevant data

Not going bankrupt

Setting up feeds is easy

Go to (PeeringDB SSO is supported):
https://bgp.tools/kb/setup-sessions

You can instantly setup sessions to
bgp.tools. Where you should export a full
table. You can peer using eBGP Multihop or
via a IXP collector where available

Export to 3rd parties/Looking Glass visibility
is entirely optional!

https://bgp.tools/kb/setup-sessions

Questions?
Want to feed bgp.tools?

go to bgp.tools and go to to bottom link "Contribute Data"

More complex queries:
IRC: Benjojo-bgptools (terahertz) / benjojo (everything

else)
Or email: admin@bgp.tools

EOF

