Measuring RPKI deployment in the DNS

A Deployment Study Focusing on a Specific Use

Edward Lewis

NANOG 89 17 October 2023

Layout of the talk

- Why would DNS operators think about routing security?
 Why expect to see RPKI adoption?
- Are DNS operators deploying RPKI?
 - In the DNS core (root, TLDs, reverse map)
 - Below the commercial registration boundary
- What can we take away from the measurements?

ROAs = Route Origination Authorization

- RPKI is a Public Key Infrastructure framework deployed to secure BGP against invalid or unauthorized route announcements
 - ROA stands for Route Origination Authorization is a cryptographic attestation that the ASN is authorized to originate a network prefix

IP Prefix	Next ASN	Another ASN	Another ASN	 Last Hop ASN
192.0.2.0/24	AS 64502	AS 64500	AS 64510	AS 64501
192.0.2.0/24	AS 64505	AS 64500	AS 64510	AS 64498
2001:DB8::/32	15 64502	AS 64500	AS 64509	AS 64501

The Role Routing Security Plays in DNS Operations

- DNS publishes information on servers, routes lead to them
 - Securing the routing system improves the reliability and availability of servers
 - Providing route origin attestations (ROA) as part of RPKI is one way to provide security meta-data
- Validating route advertisements is not as critical to name server service
 - Basic enterprise security is the goal

Measurement Method

- For a collection of zones
 - For each zone, find...
 - For each nameserver, find...
 - For each address, find...
 - For each route origination look for a ROA
 - Relying on Team Cymru's IP to ASN mapping service
- Does the route origination have a validated ROA?
 - Yes/No, percentages are "Yes"/("Yes"+"No")
 - Being careful to avoid double counting, i.e., routes shared by zones
 - Tossing error cases out

The DNS Core and Commercial Registration Boundary

Overall ROA Coverage for DNS Core

ROA Coverage for Overall

Overall ROA Coverage (DNS Core) Trend

Looking Deeper into the DNS Core

- For this to be helpful
 - Would be good to identify patterns
 - Does deployment follow any structure of the DNS?
- gTLDs, ccTLDs, and the reverse map zones
 - Each category is structured different
 - Other measurements show differences in operations
- And then look below that level

ccTLD / gTLD / Reverse Map

ccTLD / gTLD / Reverse Map (trends)

| 11

That revMap adoption seems lower than expected

- It's good to question data that does not match expectations
- revMap includes more zones than those operated by the RIRs
 - 8 legacy "class A's" and historical exceptions in the "B and C ranges"
 - Some IPv6 delegations were made straight to LIRs
- Within the RIR's, all but one NS resource record's pair of IPv4/IPv6 addresses are covered, with that pair accounting for 8 route origins.

Adoption within gTLDs

- This began with an invited measurement of a ccTLD
 It's ROA coverage was around 4%
- Ran the same measurement for 14 selected gTLDs
 - Different sizes, from 1.7 million delegations to 2,400 delegations
 - Compared Traditional to IDN
- Results...

RPKI coverage metrics

- Withholding the gTLD names
 - The 1.2 M zone is a class-of-2000 gTLD
 - The 109 K zone is a class-of-2004 regional gTLD
 - Rest are class-of-2012 gTLD

Delegations	Route Origins	Valid ROAs	RPKI Rate
1,691,583	5,094	228	4.48%
1,294,099	20,044	917	4.57%
731,274	4,659	169	3.63%
426,400	2,189	94	4.29%
292,068	1,797	44	2.45%
109,887	2,979	128	4.30%
94,715	5,614	247	4.40%
2,733	700	13	1.86%
2,347	3,451	127	3.68%

Traditional gTLDs vs. IDN-gTLDs

- Withholding the gTLD name
 - Comparing the largest IDN gTLDs with comparable sized non-IDN gTLDs

Туре	Delegations	Route Origins	Valid ROAs	RPKI Rate
ASCII	94,715	5,614	247	4.40%
IDN	91,736	555	9	1.62%
ASCII	28,671	2,967	140	4.72%
IDN	28,826	559	16	2.86%
ASCII	27,821	3,451	127	3.68%
IDN	28,297	700	13	1.86%

Who makes deployment decisions?

Category	Full Adoption (=100%)	Mixed (>0%, <100%)	No Adoption (=0%)
Zone Operators	98	145	27
Aut-Num Holders	253	38	195
IP Holders	296	17	183

- Percent is number of ROA'd route origins/all route origins
- Began the study as a measure of DNS adoption of RPKI
- RPKI isn't a DNS decision, looks like it's a routing decision
 - This should not have been a surprise!

Is there Meaning to This?

- The DNS Core ~36%
 - gTLDs ~18%, revMap ~55% steady, ccTLDs ~55% with a slight climb
- Commercial Registration Boundary
 - gTLDs ~4%, IDN-gTLDs ~2%, no data on ccTLDs
 - With commercial DNS hosting being independent of TLD, consistency in the deployment numbers isn't too surprising
- The adoption rates seem a bit low
 - Seem as in, the numbers are small, but are they meaningful?

Searching for Significance

- This isn't much data, maybe compare to DNSSEC for context
 - I have more familiarity with DNSSEC's history
 - Adoption of DNSSEC has gone on for 25 years

Relationship of RPKI, ROAs and DNSSEC

DNSSEC and RPKI

- They are similar:
 - Based on digital signatures
 - Use a hierarchy for scale
 - Administrator of the data signs makes the signature
 - User/receiver verifies the signature
- They are different:
 - DNSSEC deployment 25 years+, my data on RPKI ~4 years
 - What they cover (DNS data vs. routing announcements)
 - Data structures (DNS protocol vs. X.509 certificates)
 - Key management operations

DNSSEC & RPKI coverage metrics (Core)

Note: DNSSEC, all TLDs=gTLDs+ccTLDs; RPKI all TLDs=gTLDs+ccTLDs+revMap

DNSSEC & RPKI coverage metrics (Commercial Registration)

• Withholding the gTLD names

- The 1.2 M zone is a class-of-2000 gTLD
- The 109 K zone is a class-of-2004 regional gTLD
- Rest are class-of-2012 gTLD

Delegations	With DS	DNSSEC Rate	Route Origins	Valid ROAs	RPKI Rate
1,691,583	22,472	1.33%	5,094	228	4.48%
1,294,099	42,049	3.25%	20,044	917	4.57%
731,274	2,188	0.30%	4,659	169	3.63%
426,400	1,050	0.25%	2,189	94	4.29%
292,068	581	0.20%	1,797	44	2.45%
109,887	8,751	7.96%	2,979	128	4.30%
94,715	6,085	6.42%	5,614	247	4.40%
2,733	152	5.56%	700	13	1.86%
2,347	2,346	99.96%	3,451	127	3.68%

DNSSEC & RPKI coverage metrics (CommReg IDN comps)

- Withholding the gTLD name
 - Comparing the largest IDN gTLDs with comparable sized non-IDN gTLDs

Туре	Delegations	Names with DS	DNSSEC Rate	Route Origins	Valid ROAs	RPKI Rate
ASCII	94,715	6,085	6.42%	5,614	247	4.40%
IDN	91,736	8	0.01%	555	9	1.62%
ASCII	28,671	1,503	5.24%	2,967	140	4.72%
IDN	28,826	6	0.02%	559	16	2.86%
ASCII	27,821	678	2.44%	3,451	127	3.68%
IDN	28,297	1	0.00%	700	13	1.86%

Commentary

- Using any adjectives is risky with a small sample set, but
 - DNSSEC coverage is much more variable, TLD to TLD than RPKI
 - Seems zone admins, on average, are more aware of DNSSEC than RPKI
 - IDN gTLDs are substantially different in coverage from ASCII gTLDs
 - DNSSEC is scant, RPKI is half (2%)
 - Law of small numbers? Maybe, but these are the largest IDN gTLDs
- Nonetheless these deployment numbers are low!

My Reaction

- Operators have spoken:
 - These technologies are just not being deployed
- What prevents an operator from deploying?
 It can't simply be "more training" or "more promotion" is needed
- What would make security enhancements operations-friendly?
 I'd like to learn from operators what they feel is needed

Engage with ICANN

Thank You and Questions

Visit us at **icann.org** Email: edward.lewis@icann.org

