# IP Neo-colonialism: Geo-auditing RIR Address Registrations

Rob Beverly <<u>rbeverly@cmand.org</u>> Oct 17, 2023



# What and Why

## **Regional Internet Registries (RIRs)**

- Internet number allocation is *distributed* and *hierarchical*
- $\bullet$
- Five RIRs with regional responsibility:

IANA allocates large, contiguous IP address blocks (e.g., IPv4 /8) to RIRs



## **Role of RIRs**

- address space within their respective regions." [ARIN NRPM]
- Internet numbers registry goals [RFC 7020]:
  - Allocation pool management (finite resource, uniqueness)
  - *Hierarchical allocation* (efficiency)
  - Registration accuracy (to meet operational needs)

## • "The primary role of RIRs is to manage and distribute public Internet

## **Role of RIRs**

- address space within their respective regions." [ARIN NRPM]
- Internet numbers registry goals [RFC 7020]:
  - Allocation pool management (finite resource, uniqueness)
  - *Hierarchical allocation* (efficiency)
  - Registration accuracy (to meet operational needs)

"A core requirement ... is to maintain a registry of allocations ... to provide accurate registration information of those allocations in order to meet a variety a operational requirements." RFC7020

## • "The primary role of RIRs is to manage and distribute public Internet



## **Our Work: Geo-Auditing Prefix Registration**

- 1. Examine IPv4 address registry information across the five RIRs
- 2. Active latency-based IP geolocation of allocated IPv4 prefixes
  - Where are allocated prefixes physically used?
- 3. Taxonomy of prefix registration geo consistency
  - How does physical location compare to RIR's region and to registration info?
- 4. Geo "audit" of registration consistency
  - How geo-consistent are registrations across the RIRs?

## Wait! Out-of-region use is allowed!

- Not looking at inter-RIR transfers (publicly logged and vetted by RIRs):
  - Instead, out-of-region use that can <u>only</u> be uncovered via measurement
- Adopt a <u>conservative</u> view of out-of-region use:
  - If used out-of-region, is it at least consistent with the registered organization's location?
- It's complicated: different RIRs have <u>different policies</u>

#### **NRO Comparative Policy Overview** https://www.nro.net/rir-comparative-policy-overview-2023-q2/

- ARIN: "To receive resources, ARIN requests organizations to verify that it plans on using the resources within the ARIN region"
- RIPE: "The network that will be using the resources must have an active element located in the RIPE NCC service region"
- APNIC: "permits account holders located within the APNIC service region to use APNIC-delegated resources out of region"
- LACNIC: "requires organizations to be legally present and have network infrastructure in the LACNIC service region to apply for and receive resources"
- AFRINIC: "requires organizations/persons to be legally present and the infrastructure from which the services are originating must be located in the AFRINIC service region"

## Motivation

- Increase transparency and help community understand where a scarce resource is being used
- Quantify extent to which registry information is accurate and can serve operational needs (e.g., security)
- Inform ongoing discussion over "in-region" address use and policy

## Motivation

- resource is being used
- Quantify extent to which registry information is accurate and can serve operational needs (e.g., security)
- Inform ongoing discussion over "in-region" address use and policy



a a make a superior of a superior of the same and the same and the superior of a second same and the same

#### Increase transparency and help community understand where a scarce

## (What this talk is not)

- We recognize:
  - Economic value of IP addresses
  - Need for efficient and equitable use of IP addresses
  - Operational constraints / expedience / messiness of real-world
- Goal is to shed quantitative light on IP address registration geo-consistency
  - **Not** claiming to find policy violations
  - Not advocating for policy changes



## Example

NetHandle: OrgID: Parent: NetName: NetRange:

OrgID: OrgName: Street: City: State/Prov: Country:

NET-104-148-63-0-1 C05266659 NET-104-148-0-0-1 WEB-OMEGA-DO-BRASIL 104.148.63.0 - 104.148.63.255

C05266659 Web Omega do Brasil Rua do Xareu, qd 13, lote 20 Goiania GO BR

#### /24 in a /8 allocated to ARIN

- Registered owner in Brazil (outside of ARIN's region)
- Q: where is this /24 physically?



## Example

NetHandle: OrgID: Parent: NetName: NetRange:

OrgID: OrgName: Street: City: State/Prov: Country:

NET-104-148-63-0-1 C05266659 NET-104-148-0-0-1 WEB-OMEGA-DO-BRASIL 104.148.63.0 - 104.148.63.255

C05266659 Web Omega do Brasil Rua do Xareu, qd 13, lote 20 Goiania GO BR

#### /24 in a /8 allocated to ARIN

- Registered owner in Brazil (outside of ARIN's region)
- Q: where is this /24 physically?
  - In ARIN's region?
  - In LACNIC's region?
  - In neither ARIN nor LACNIC?



## Example

NetHandle: OrgID: Parent: NetName: NetRange:

OrgID: OrgName: Street: City: State/Prov: Country:

NET-104-148-63-0-1 C05266659 NET-104-148-0-0-1 WEB-OMEGA-DO-BRASIL 104.148.63.0 - 104.148.63.255

C05266659 Web Omega do Brasil Rua do Xareu, qd 13, lote 20 Goiania GO BR

#### /24 in a /8 allocated to ARIN

- Registered owner in Brazil (outside of ARIN's region)
- Q: where is this /24 physically?
  - In ARIN's region? OK
  - In LACNIC's region? OK
  - In neither ARIN nor LACNIC? INCONSISTENT



## **RIR Geo-consistency Taxonomy**

- Given a prefix we compare:
  - *RIR<sub>Reg</sub>*: RIR responsible for allocating the prefix
  - *RIR<sub>CC</sub>*: RIR responsible for the country of the registered organization
  - *RIR<sub>Geo</sub>*: RIR responsible for the inferred physical geolocation of the prefix

|                                |                    | Example           |     |
|--------------------------------|--------------------|-------------------|-----|
| Result                         | RIR <sub>Reg</sub> | RIR <sub>CC</sub> | RIF |
| (FC) Fully Geo-consistent      | ARIN               | ARIN              | А   |
| (CC) Country Geo-consistent    | RIPE               | ARIN              | A   |
| (CI) Country Geo-inconsistent  | ARIN               | RIPE              | А   |
| (RI) Registry Geo-inconsistent | ARIN               | ARIN              | I   |
| (FI) Fully Geo-inconsistent    | ARIN               | RIPE              | AP  |



### Methodology Overview









#### **Methodology** Overview



### **Methodology I** Bulk whois records

- Key-value pairs; different schemas for different RIRs
- Parse prefix and registered organization's mailing address
- Ignore transferred / non-managed records
- Map mailing address countries to the RIR responsible for that country
- Gives  $RIR_{Reg}$  and  $RIR_{CC}$

| NetHandle: | NET-104-148-63-0-1         |
|------------|----------------------------|
| OrgID:     | C05266659                  |
| Parent:    | NET-104-148-0-0-1          |
| NetName:   | WEB-OMEGA-DO-BRASIL        |
| NetRange:  | 104.148.63.0 - 104.148.63. |

| inetnum:      | 195.24.192.0 - 195.24.223.2 |
|---------------|-----------------------------|
| netname:      | CM-CAMTEL-970403            |
| descr:        | Data communication and      |
| international |                             |
| descr:        | telecommunication of Camero |
| country:      | CM                          |
|               |                             |

| 2 |
|---|
| / |

| inetnum: | 185.135.75.0 - 185.135.75.2 |
|----------|-----------------------------|
| netname: | NON-RIPE-NCC-MANAGED-ADDRES |
| BLOCK    |                             |
| descr:   | Japan                       |
| country: | JP                          |
|          |                             |







## **Bulk whois macro stats**

| RIR     | Prefixes | Out-region   | Addresses  |
|---------|----------|--------------|------------|
|         | (k)      | Prefixes (k) | (/24s)     |
| ARIN    | 3,109.8  | 77.3 (2.5%)  | 5,491,682  |
| RIPE    | 3,556.7  | 29.8 (0.8%)  | 2,925,866  |
| APNIC   | 1,150.8  | 2.7 (0.2%)   | 9,136,159  |
| LACNIC  | 66.5     | 0.3 (0.5%)   | 251,088    |
| AFRINIC | 148.5    | 21.1 (14.2%) | 486,456    |
| Total:  | 8,032.3  | 131.3        | 18,291,251 |

- April 2023 raw dumps from all five RIRs
- Approximately 8M IPv4 prefix registrations

**Out-Region** Addresses (/24s) 128,546 (2.3%) 50,579 (1.7%) 14,327 (0.2%) 651 (0.3%) 23,601 (4.9%) 217,705

## Inter-RIR region registration is common

- Prefixes of an RIR may be obtained / registered to organizations that are outside of that RIR's service region
- May be explicitly **allowed**: "ARIN registered resources may be used outside the ARIN service region... provided that the applicant has a real and substantial connection with the ARIN region." [NRPM]



### **Methodology II** IPv4 Hitlist

- Utilize a "hitlist" of known / likely-responsive IPv4 addresses
- Longest-prefix match hitlist addresses to RIR prefix
  - Ignore prefixes without any responsive addresses
  - Ignore anycast prefixes
- Randomly sample 10k non-anycast prefixes with responsive targets from each RIR (50k total prefixes)

### **Methodology III** Delay-based IP Geolocation

- Utilize 20 RIPE Atlas nodes to send 3 ICMP probes to a target prefix address
- Select Atlas nodes:
  - 3 nodes within each RIR (15 total vantage points)
  - 5 nodes within the registered country
- $RIR_{Geo}$  is RIR responsible for RIR node returning minimum RTT

## Limitations

- Prefix bias: lacksquare
  - Randomly select 10k from each RIR
  - No ICMP-responsive target in prefix
  - No Atlas probes within the prefixes' registered country
- Geolocation
  - Atlas node location may be incorrect
  - Registration country may be a corporate headquarters elsewhere
  - Inconsistent prefixes

## Limitations

- Prefix bias:
  - Randomly select 10k from each RIR
  - No ICMP-responsive target in prefix
  - No Atlas probes within the prefixes' registered country
- Geolocation
  - Atlas node location may be incorrect
  - Registration country may be a corporate headquarters elsewhere
  - Inconsistent prefixes

Initial work; select equal number of prefixes from each RIR

Meaningful coverage, with incountry nodes: 43k nodes in 87% of all countries

5 nodes in-country; 3 nodes on each continent. Refinement round.

Use registred country as a "second chance" to be consistent; work stands if we only look at RIR and geolocation

Current/Future work



## Why latency-based geolocation?

- BGP and AS origin information can obscure true location
- IP Geolocation databases (e.g., MaxMind) known to contain inaccuracies, and use whois
- Latency-based geolocation relies on physical signal propagation constraints
- Minimizing error:
  - Latency-based geolocation known accurate at continent and country granularity Sound in proving geo-consistency (cannot manipulate speed-of-light constraint)
  - If any geo-inconsistency found, we select a new set of 20 nodes and repeat

## Results





5x Atlas UK Nodes: min(RTT) = 129ms





5x Atlas UK Nodes: min(RTT) = 129ms

RIPE Atlas Nodes: min(RTT) = 149ms





5x Atlas UK Nodes: min(RTT) = 129ms

RIPE Atlas Nodes: min(RTT) = 149ms

African Atlas Nodes: min(RTT) = 258ms





5x Atlas UK Nodes: min(RTT) = 129ms

RIPE Atlas Nodes: min(RTT) = 149ms

African Atlas Nodes: min(RTT) = 258ms

ARIN Atlas Nodes: min(RTT) = 71ms





5x Atlas UK Nodes: min(RTT) = 129ms

RIPE Atlas Nodes: min(RTT) = 149ms

African Atlas Nodes: min(RTT) = 258ms

ARIN Atlas Nodes: min(RTT) = 71ms

NANOG89: Geo-auditing RIR Address Registrations

Further refinement with Atlas nodes in ARIN region constrain to a Phoenix, AZ node with 7ms RTT. RIPE registry, RIPE organization, ARIN location => "registry geo-inconsistent"





## Findings

| Result                    | ARIN  | RIPE | APNIC | LACNIC | AFRIN |
|---------------------------|-------|------|-------|--------|-------|
| Fully Geo-consistent      | 94.7% | 98.1 | 98.1% | 97.0%  | 81.   |
| Country Geo-consistent    | 1.2%  | 1.1% | 0.5%  | 0.8%   | 7.    |
| Country Geo-inconsistent  | 0.8%  | 0.2% | 0.2%  | 0.0%   | 0.    |
| Registry Geo-inconsistent | 3.2%  | 0.4% | 1.1%  | 2.1%   | 10.   |
| Fully Geo-inconsistent    | 0.1%  | 0.2% | 0.1%  | 0.0%   | 0.    |

- Overall, 96% of prefixes are fully consistent
- Primary contributor to ARIN inconsistencies are prefixes located in Mexico
- 50% of LACNIC inconsistencies are prefixes within USA
- AFRINIC has largest fraction of registry geoinconsistencies (dominated by Europe and China)

NANOG89: Geo-auditing RIR Address Registrations



#### 23

## Take-aways

- Different RIRs have different out-of-region address use policies
  - But limited visibility of where resources used, especially post-allocation
- RIR allocations are largely geo-consistent, with some notable exceptions
- Geo-inconsistencies raise operational and security concerns that suggest registration information should be updated
- RIR whois records use inconsistent schemas, complicating data analysis (RDAP will hopefully fix this!)

## Thanks!

- First <u>quantitative</u> geo-audit of RIR IP registry information
  - Technical draft paper: <u>https://arxiv.org/abs/2308.12436</u>
  - All RIPE Atlas data open and public for transparency
- Future work: expand measurements, relationship between prefix age, size, and consistency, extend to IPv6, and engage with RIRs
- We welcome feedback/flames!

Rob Beverly <<u>rbeverly@cmand.org</u>>