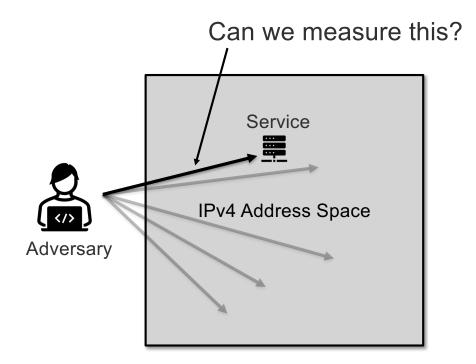
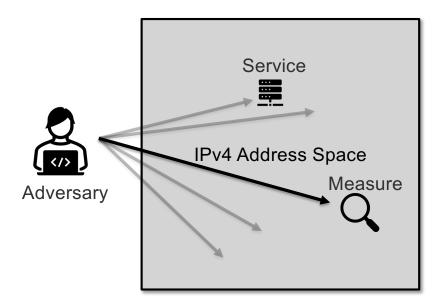

DSCOPE: A Cloud-Native Internet Telescope

Eric Pauley, Paul Barford, Patrick McDaniel

University of Wisconsin–Madison

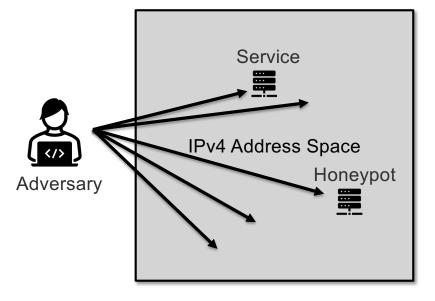


Why Measure the Internet?



Why Measure the Internet?

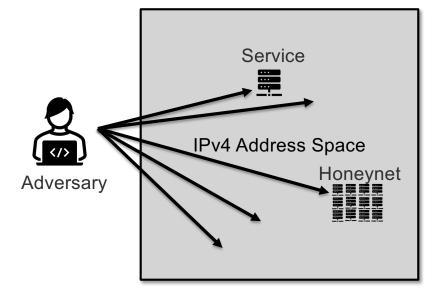
Why Measure the Internet?



Honeypots: emulating vulnerable services (1970s-)

Idea: pose as vulnerable service

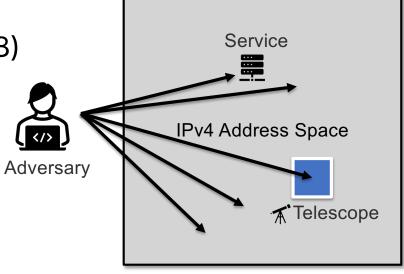
Pro: interactivity Con: limited coverage (one IP)



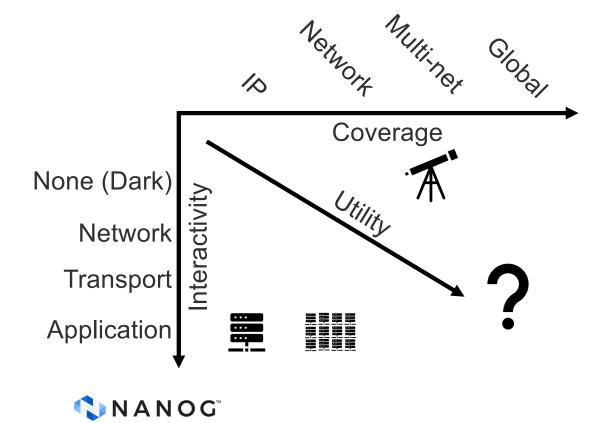
Honeynets: networks of honeypots (1999)

Deploy many honeypot IPs Bonus: virtualize routing

Pro: interactivity and coverage! Con: still limited footprint



Telescopes: Large-scale measurement (2001)


Passively measure large IP blocks (/8) E.g., UCSD-NT, Merit

- Pro: Massive footprints Cons:
- limited interactivity
- homogeneous IP Space

N A N O G^{**}

The space of (inbound) Internet Measurement

- Emergent Threats
- Botnets
- Backscatter
- Routing
- Misconfigurations

The Changing Internet (Measurement) Landscape

Rise of Public Clouds Adversaries target valuable IP ranges

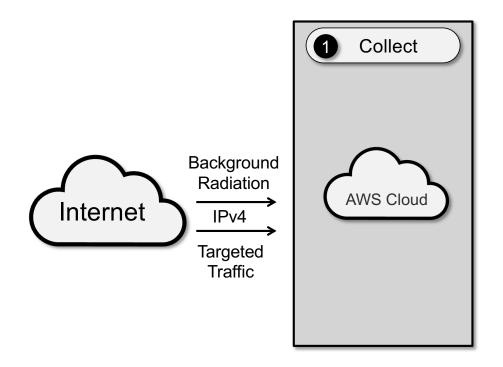
Semantics Moving up Protocol Stack Passive measurement is incomplete

Sophisticated & Distributed Adversaries Fixed footprints miss adversarial response

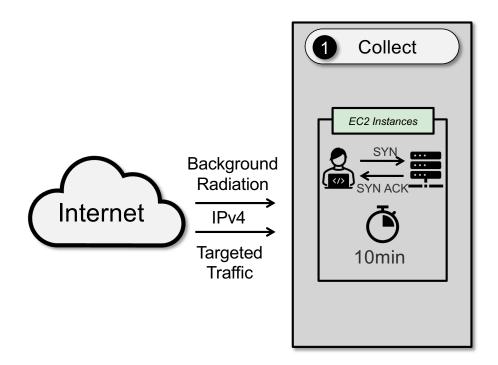
An Internet Telescope for the Modern Internet

- **Representative Traffic**
- Deployed to targeted cloud IP address ranges globally

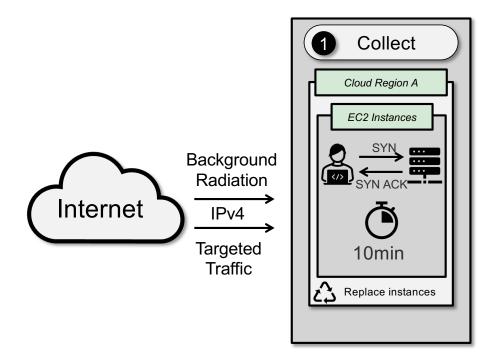
7	
('	

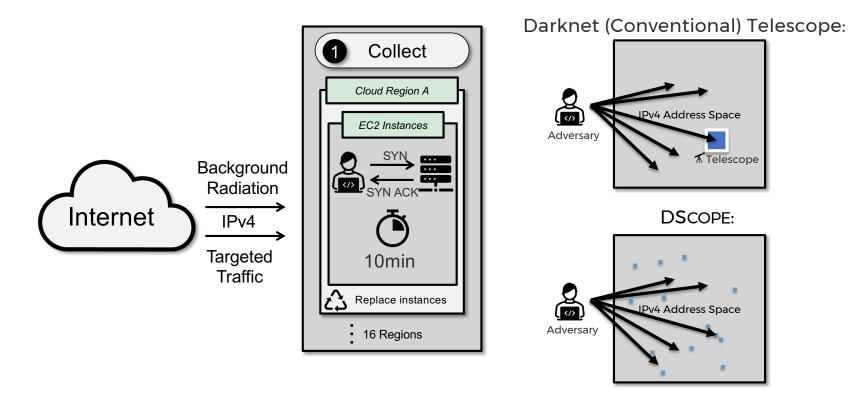

Interactivity Collects application-layer banner information Elicits deeper adversarial behavior

• Agile through the IP address space IP footprint varies over time

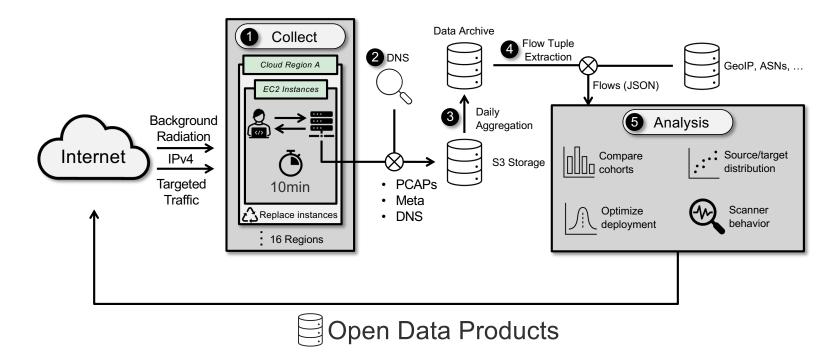


Cloud provider IP footprints and costs:


Provider	IPs	#/8s	Cost (USD/IP-Hr)
GCP [15]	11.5 M	34	0.005
Azure [3]	35.7 M	13	0.044
AWS [2]	134 M	82	0.0016



iptables -j DNAT



N A N O G^{**}

DSCOPE: A Global, Dynamic, Interactive Cloud Telescope and Analysis Platform!

DSCOPE by the numbers

2+ years of collected traffic

6.3M IPv4s

110k /24 networks

More than any other telescope

NANOG

>15M source IPs measured

\$461.57 \$14.89 46 Costs (\$) \mathcal{N} հ 16 Mav-07 Mav-11 May-15 May-19 Mav-23

Average daily cost

Usage type count

Mav-27

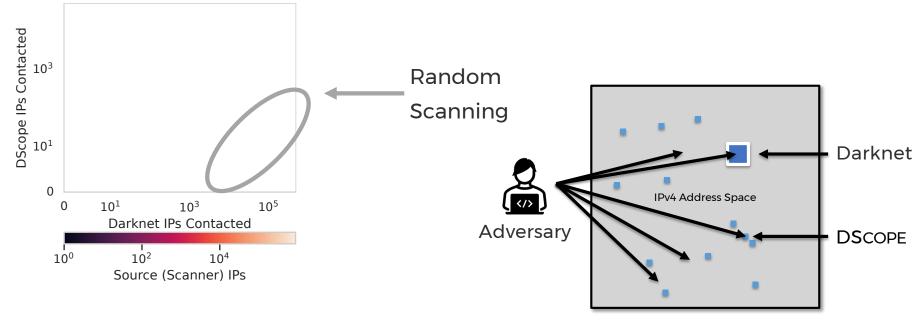
May-31

Total cost

May-03

Results: 18 findings on cloud-based Internet measurement

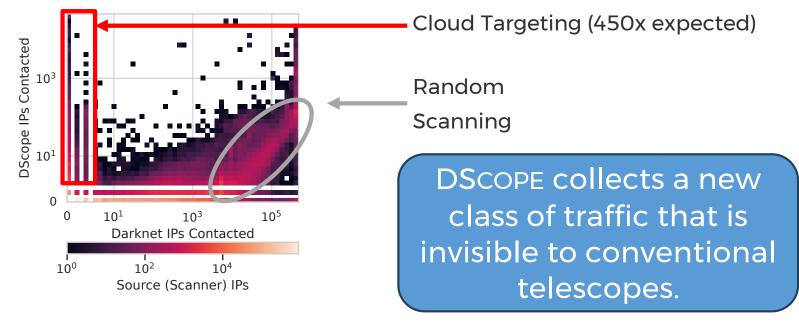
	Finding	Metric		
Cloud Tar	geting (Section 4)			
(F1)	An interactive cloud telescope receives traffic from substantially more IP addresses.	73% more traffic		
(F2)	Cloud IP traffic is more variable than darknets.	95% higher σ_{IP}		
(F3)	Scanners target cloud IP ranges or avoid telescopes.	$450 \times$ higher than expected under H_0		
(F4)	Scanners that are seen by both darknet/cloud telescopes are largely untargeted.	N/A		
(F5)	Scans targeting existing telescopes are primarily random.	N/A		
Interactivi	ty & Service Lifecycle (Section 5)			
(F6)	Some scanner IPs demonstrate clearly non-random behavior.	1.7% of traffic $(p < 10^{-4})$		
(F7)	Delayed scanners leverage information from other sources to target responsive IPs.	> 90% discernible source		
(F8)	Delayed scanners are not seen by existing darknet telescopes.	90% telescope avoidance ($p < 10^{-4}$)		
Intra-clou	d Targeting (Section 6)			
(F9)	Quantity of scanners differs across cloud regions, but intra-region variance dominates	$\pm 0.3\sigma$ variation between regions		
(F10)	Source IP variance differs between regions.	$6 \times$ variation in σ		
(F11)	Scanners target cloud IP addresses based on outdated data.	21% fewer scanners to 2021 AWS IPs		
(F12)	Traffic to individual regions is largely consistent with untargeted scanning.	< 10% regional targeting		
(F13)	Some sophisticated scanners precisely target physical regions within cloud IP blocks.	$4 \times$ background rate for region/port		
(F14)	Scanners show minimal preference to groups of regions in similar geographies.	0.02 lower overlap in same-geography		
Optimizin	g Collection (Section 7)			
(F15)	Observed traffic increases over time after instance deployment, but only to a point.	67% increase		
(F16)	Scanners targeting ORION are less likely to be reactive.	34% increase		
(F17)	Short-lived use of IP addresses maximizes economical yield of new behavior.	< 10 min for max yield		
(F18)	Extended measurement on a given IP is not necessary to achieve high coverage.	90% IP coverage at 72 minutes		


Results: 18 findings on cloud-based Internet measurement

		Finding	Metric
	Cloud Tar	geting (Section 4)	
	(F1)	An interactive cloud telescope receives traffic from substantially more IP addresses.	73% more traffic
	(F2)	Cloud IP traffic is more variable than darknets.	95% higher σ_{IP}
Coverage	(F3)	Scanners target cloud IP ranges or avoid telescopes.	$450 \times$ higher than expected under H_0
	(F4)	Scanners that are seen by both darknet/cloud telescopes are largely untargeted.	N/A
	(F5)	Scans targeting existing telescopes are primarily random.	N/A
	Interactivi	ty & Service Lifecycle (Section 5)	
	(F6)	Some scanner IPs demonstrate clearly non-random behavior.	1.7% of traffic ($p < 10^{-4}$)
	(F7)	Delayed scanners leverage information from other sources to target responsive IPs	> 90% discernible source
nteractivity ('	(F8)	Delayed scanners are not seen by existing darknet telescopes.	90% telescope avoidance ($p < 10^{-4}$)
	Intra-clou	d Targeting (Section 6)	
	(F9)	Quantity of scanners differs across cloud regions, but intra-region variance dominates	$\pm 0.3\sigma$ variation between regions
	(F10)	Source IP variance differs between regions	$6 \times$ variation in σ
Validity	(F11)	Scanners target cloud IP addresses based on outdated data.	21% fewer scanners to 2021 AWS IPs
	(F12)	Traffic to individual regions is largely consistent with untargeted scanning.	< 10% regional targeting
	(F13)	Some sophisticated scanners precisely target physical regions within cloud IP blocks.	$4 \times$ background rate for region/port
	(F14)	Scanners show minimal preference to groups of regions in similar geographies.	0.02 lower overlap in same-geography
	Optimizing	g Collection (Section 7)	
	(F15)	Observed traffic increases over time after instance deployment, but only to a point.	67% increase
	(F16)	Scanners targeting ORION are less likely to be reactive.	34% increase
Cost	(F17)	Short-lived use of IP addresses maximizes economical yield of new behavior.	$< 10 \mathrm{min}$ for max yield
		Extended measurement on a given IP is not necessary to achieve high coverage.	

N A N O G^{**}

Coverage: Is Internet Scanning Random?


Recall: Null-Hypothesis of Random Scanning

N A N O G^{**}

Coverage: Is Internet Scanning Random?

Recall: Null-Hypothesis of Random Scanning

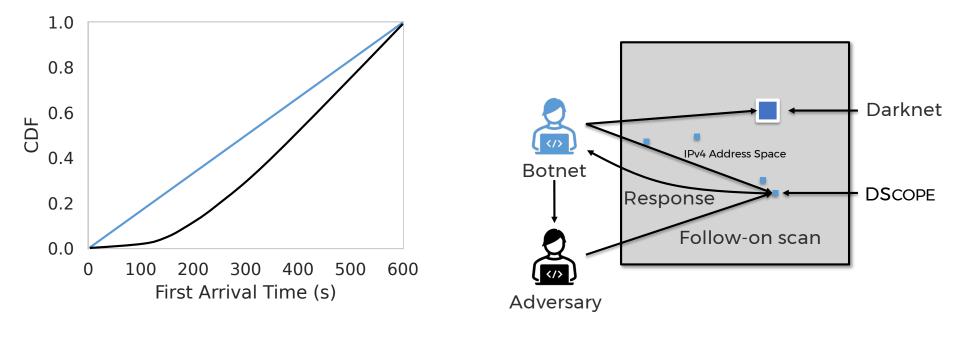
Coverage: Is Internet Scanning Sequential?

ORION

DSCOPE

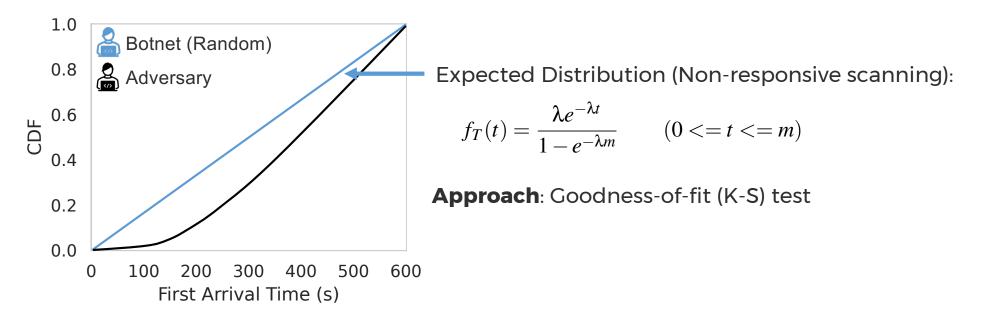
IPv4 /8 around Merit's ORION telescope:

Question: Are IPs near ORION more likely to share traffic?

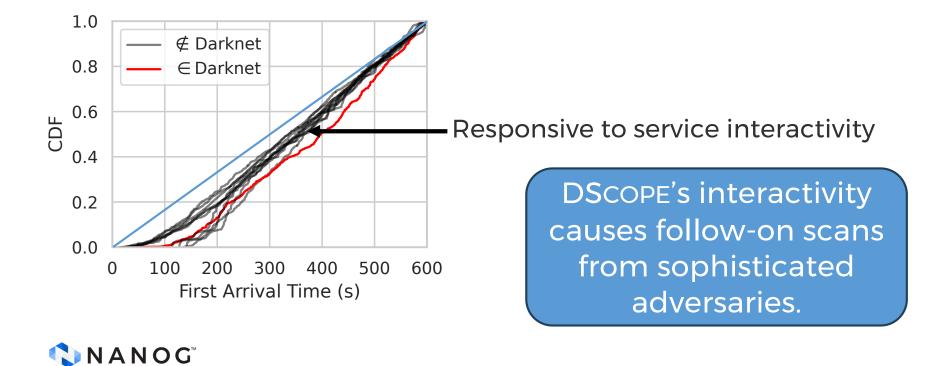

Answer: No difference (not sequential)

DScope: A Cloud-Native Internet Telescope

C Interactivity: Service Lifecycle and follow-on scans

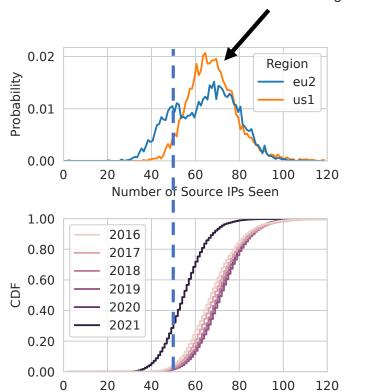

Does interactivity induce adversarial response?

(Interactivity: Service Lifecycle and follow-on scans


Does interactivity induce adversarial response?

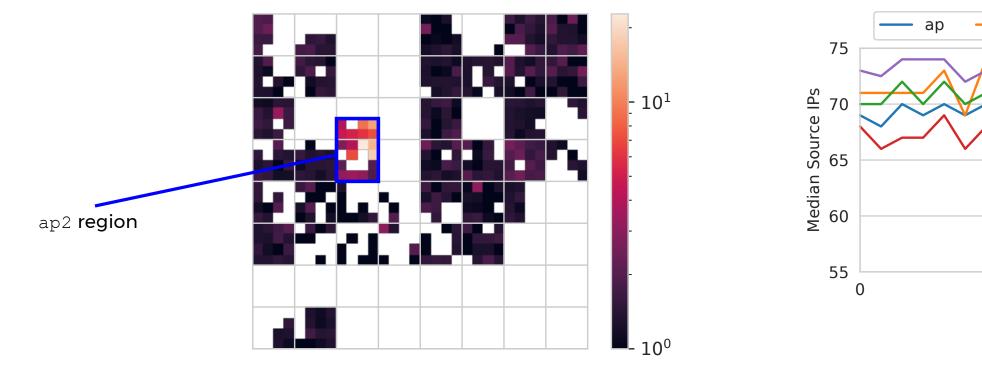
C Interactivity: Service Lifecycle and follow-on scans

Does interactivity induce adversarial response?



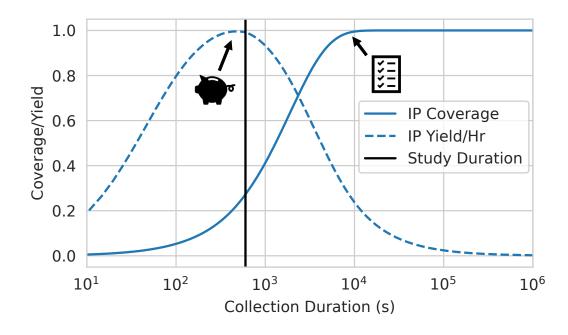
A Cloud Traffic Distributions & Statistical Validity

- IP address history
- Latent configuration

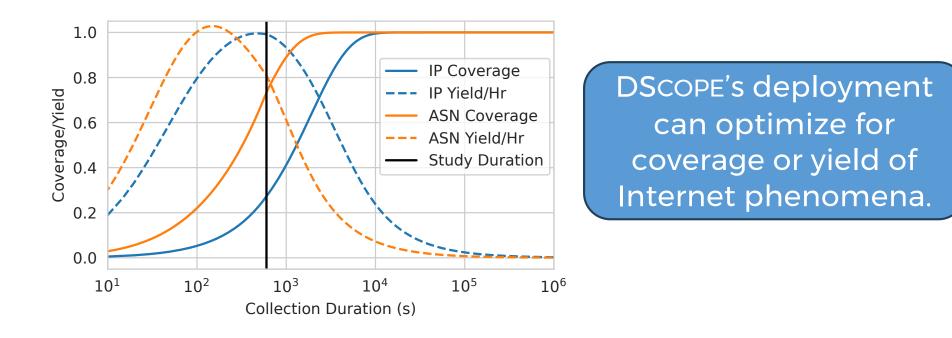

DSCOPE's large footprint allows for elimination of confounding factors.

Scanners Targeting us1?

A Geographic Targeting: An Example


Hilbert Diagram of port 445 traffic seen by 3.0.0.0/8 IP addresses

Cost Optimization: How long should DSCOPE hold IPs?


Goal: Max coverage with min cost (IP-hours)

N A N O G^{**}

Cost Optimization: How long should DSCOPE hold IPs?

Goal: Max coverage with min cost (IP-hours)

N A N O G^{*}

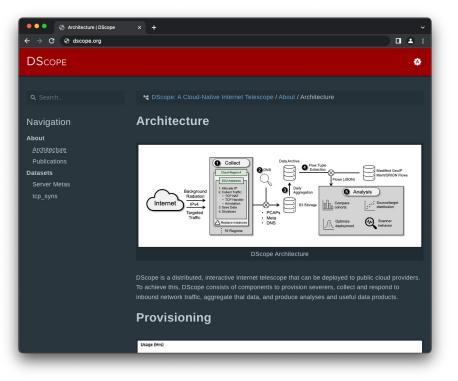
DSCOPE achieves:

Representative Traffic and Global Coverage

(] Interactivity & Service Lifecycle

e Agility through IP Space

Price Performance



Useful data...?

BDSCOPE.ORG and Open Data

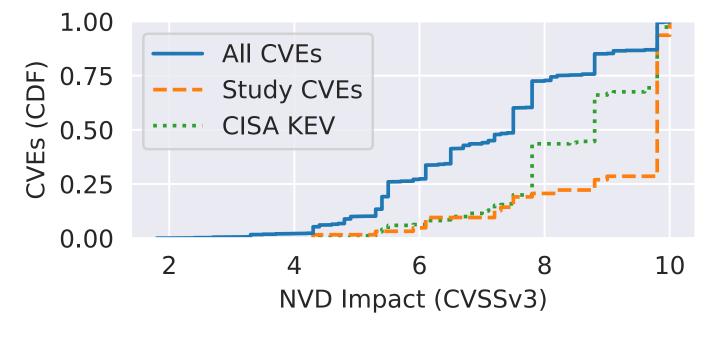
- Data Products
 - Standard formats (JSON, PCAP)
 - 2+ years of data (more daily)
 - Data sharing agreements WIP
- Interactive Visualizations
 - Emergent Threats
 - Cloud Scanning
 - Deployment Health

What data does DScope provide?

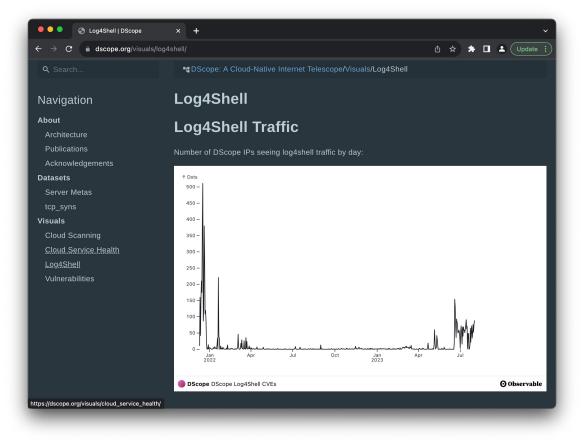
- Broad Application-layer traffic
- Cloud-targeted phenomena
- General-purpose telescope data

App-layer Data: Vulnerabilities

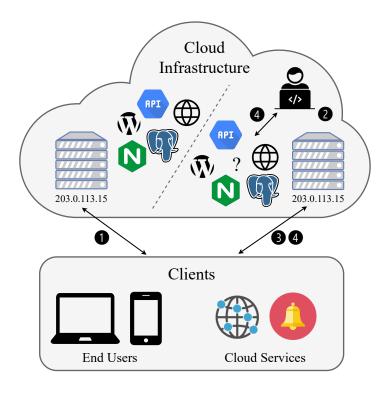
Data: Traffic matches against IDS rulesets


Analyses:

- CVE trends
- Exploit Sources


• • • • • • • • • • • • • • • • • • •	× +						~
\leftrightarrow \rightarrow C \bullet dscope.org/visuals/vulr	nerabilities/				* *		
DScope							٨
	n DScope: A C	loud-Native Inter		isuals/Vulnerabil	ities		
Navigation	Vulnerat	oilities					
About Architecture Publications	All CVEs	s seen b	y DScop	e			
Datasets	CVE	First seen by	•CVE Publicati	Days seen by	DScope	IPs hit	
Server Metas	2022-35748	2022-11-29	2023-05-31T1	1		1	
	2022-47966	2023-07-14	2023-01-18T1	1		1	
tcp_syns	2022-44877	2023-02-20 2022-10-15	2023-01-05T2 2022-10-18T1	1		5	
Visuals	2022-40684	2022-10-15	2022-10-1811 2022-10-13T1	12		16	
Cloud Scanning	2022-42889	2022-12-29	2022-10-03T0	4		3	
Cloud Service Health	2022-35914	2022-11-23	2022-09-19T1	17		17	
Log4Shell	2022-31269	2021-03-21	2022-08-25T2	7		54	
Vulnerabilities	2022-20858	2021-11-03	2022-07-21T0	14		146	
vuiterabilities	2022-20857	2021-03-15	2022-07-21T0	568		66,976	
	2022-26138 + Dats 40,000 - 30,000 - 26,000 - 26,000 - 10,000 - 10,000 - 10,000 - 10,000 -	2022-08-04	2022-07-20T1	2 Martin Martin	mulan	2 1	

App-Layer Data: Is DScope representative?



Example: Log4Shell

Measuring Cloud Squatting

- Idea: Cloud IPs receive traffic intended for previous tenants
- Measurement: Identify vulnerable configurations through traffic analysis

Cloud Squatting: Vulnerability at Scale

<u>Cloud Services</u> >5M messages 4 cloud services

- Third-Party Services
- >3M messages
- Numerous Services

<u>DNS</u>

- 5400 Websites
- 23 top-1000

General-Purpose Telescope Data

- Raw PCAPs
 - Application layer or synthetic-darknet
 - Limited to TCP traffic
- Scanning Events
 - Caveats: non-linear address space

Building Future Vantage Points

Goal: Quality > Quantity

- DScope achieves quality by using diverse cloud IPs
- Fewer IPs yield more representative phenomena
- What are we trying to gain coverage of?

Approach: Increase footprint diversity

- Spread across operators, geographies, services
- Collaborations with industry to instrument networks
- Get in touch for more details!

N A N O G^{**}

Thanks!

epauley@cs.wisc.edu

