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Honeypots: emulating vulnerable services (1970s-)

Idea: pose as vulnerable service

Pro: interactivity
Con: limited coverage (one IP)
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Honeynets: networks of honeypots (1999)

Deploy many honeypot IPs
 Bonus: virtualize routing

Pro: interactivity and coverage!
Con: still limited footprint
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Telescopes: Large-scale measurement (2001)

Passively measure large IP blocks (/8)
 E.g., UCSD-NT, Merit

Pro: Massive footprints
Cons:
• limited interactivity
• homogeneous IP Space
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The space of (inbound) Internet Measurement

• Emergent Threats
• Botnets
• Backscatter
• Routing
• Misconfigurations
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The Changing Internet (Measurement) Landscape

Rise of Public Clouds
Adversaries target valuable IP ranges

Semantics Moving up Protocol Stack
Passive measurement is incomplete

Sophisticated & Distributed Adversaries
Fixed footprints miss adversarial response



An Internet Telescope for the Modern Internet

Representative Traffic
Deployed to targeted cloud IP address ranges globally

Interactivity
Collects application-layer banner information
Elicits deeper adversarial behavior

Agile through the IP address space
IP footprint varies over time



DSCOPE: A Global, Dynamic, Interactive Cloud Telescope



Table 2: IP footprint and provisioning cost of major providers.

Provider IPs # /8s Cost (USD/IP-Hr)

GCP [15] 11.5 M 34 0.005
Azure [3] 35.7 M 13 0.044
AWS [2] 134 M 82 0.0016

Between major US-based cloud providers, there is vast dif-
ference in the number and diversity of IP addresses. When de-
ploying DSCOPE, optimizing these will provide the most gen-
eral coverage of Internet phenomena. Amazon Web Services,
being the earliest of the providers to offer public IP leasing,
seemingly structured their offerings with less consideration
for the looming shortage of IPv4 addresses seen today (e.g.,
allocation of public IPs to instances by default). Potentially
to maintain backwards compatibility, Amazon has acquired
a large portion of the total IPv4 space, controlling nearly 3⇥
as many IP addresses as the other two providers combined.
Further, since these addresses have been acquired over many
years, they occupy different regions of the IPv4 address space.

The structure of cloud provider offerings also impacts the
cost of measuring data on distinct IP addresses. Both Azure
and GCP charge separate fees to lease public IP addresses,
even when used with running instances. This, combined with
higher costs of the lowest-price instances on GCP, means
that compared to AWS an IP-hour of measurement costs 3⇥
as much on GCP and 27⇥ as much on Azure. Based on both
of these factors, we concluded that Amazon Web Services
was the most suitable platform to study the effectiveness
of DSCOPE. After accounting for fluctuating compute costs,
support overhead, and oversampling, our cloud costs for
this paper’s week-long study window were roughly 70 USD.

Traffic phenomena across providers In addition to
cost and overall IP address space, several factors make
AWS an especially strong platform for Internet measurement.
For instance, Amazon’s legacy emphasis on IPv4 leads
to a stronger record of servers being directly exposed to
the Internet in their IP ranges, increasing potential yield
for adversaries. Additionally, Amazon’s continual acquisition
of new IP ranges (evidenced by the high number of /8s
covered) implies that AWS provides a more representative
view with respect to historical IP address space structures.

While we focused on a single cloud platform in this
study, the high-level techniques employed by DSCOPE are
applicable to other providers as well, and we expect that study
of additional providers could yield new insights into behavior
that are specific to those settings. For instance, adversaries
targeting protocols specific to certain providers (e.g., forging
traffic from Azure Service Bus to Microsoft Azure IPs)
would likely only be measurable within those providers.
While study of untargeted (ı.e., randomly distributed
across the IPv4 address space) traffic will naturally favor the

lowest-cost provider, augmenting DSCOPE’s vantage point
with additional cloud providers and deployment scenarios
is a promising direction for future work.

3.2 Implementation
Based on our study of cloud provider offerings and theoretical
ability to measure traffic across their respective IP address
spaces, we develop DSCOPE, a distributed network telescope
designed for deployment to a public cloud. Two high-level
requirements for DSCOPE were scalability and interactivity.
To these ends, DSCOPE (Figure 2) consists of components
to provision instances, collect network traffic, aggregate
and preprocess that traffic, and analyze the resulting data.

Provisioning Servers Within our deployment target of
Amazon Web Services, DSCOPE is designed to be scalable,
maximizing yield of new IP addresses at minimal cost.
Within each region, DSCOPE uses a provider-managed spot
fleet to continually provision new compute instances (and
therefore new IP addresses) from spare capacity on AWS
Elastic Compute Cloud (EC2). These spot instances can
be preempted by Amazon at any time for capacity reasons,
though the tg4.nano instances used by DSCOPE saw a
preemption rate of only 0.05% during the period studied,
immaterial to the overall data collected. Spot instances
run a minimal Linux distribution on 2GB of storage and
0.5 GB of memory, minimizing associated costs. Upon
booting, each instance downloads the DSCOPE binary
from a copy stored in each cloud region, then immediately
starts collection. As a result, we estimate that each instance
is billed for only 60 s of compute where network traffic
is not measured. Instance management is performed by
Amazon’s control plane itself, with the deployment of this
configuration being automated by ~300 lines of Python code.

Collecting Traffic To interactively collect network traffic
across all TCP services, DSCOPE leverages network address
translation (NAT) within the Linux kernel to route all incom-
ing TCP traffic to a single service. The DSCOPE service then
accepts these connections, collects the original connection
information from the kernel, and can interact based on the na-
ture of the connection. While DSCOPE is capable of arbitrary
interaction, including inferring client protocols and hosting
(fake) application-layer services, our current deployment (and
that evaluated in this work) completes transport-layer (TCP)
handshakes and emulates an unresponsive application-layer
service. In this way, banner-level information is received
from clients while reducing the possibility of evoking the
transmission of sensitive data (e.g., deployment of an SSH
honeypot might cause the transmission of real user credentials
when deployed on cloud systems). Once data is collected
for a given instance, it is stored encrypted within Amazon
S3. Collection code is implemented in ~2500 lines of Go.

Cloud provider IP footprints and costs:
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DSCOPE by the numbers

2+ years of collected traffic

6.3M IPv4s

110k /24 networks

More than any other telescope

>15M source IPs measured



Results: 18 findings on cloud-based Internet measurement
Table 1: Findings of our measurement study. Metrics are detailed in corresponding sections.

Finding Metric

Cloud Targeting (Section 4)
(F1) An interactive cloud telescope receives traffic from substantially more IP addresses. 73% more traffic
(F2) Cloud IP traffic is more variable than darknets. 95% higher sIP
(F3) Scanners target cloud IP ranges or avoid telescopes. 450⇥ higher than expected under H0
(F4) Scanners that are seen by both darknet/cloud telescopes are largely untargeted. N/A
(F5) Scans targeting existing telescopes are primarily random. N/A

Interactivity & Service Lifecycle (Section 5)
(F6) Some scanner IPs demonstrate clearly non-random behavior. 1.7% of traffic (p < 10�4)
(F7) Delayed scanners leverage information from other sources to target responsive IPs. > 90% discernible source
(F8) Delayed scanners are not seen by existing darknet telescopes. 90% telescope avoidance (p < 10�4)

Intra-cloud Targeting (Section 6)
(F9) Quantity of scanners differs across cloud regions, but intra-region variance dominates.±0.3s variation between regions
(F10) Source IP variance differs between regions. 6⇥ variation in s
(F11) Scanners target cloud IP addresses based on outdated data. 21% fewer scanners to 2021 AWS IPs
(F12) Traffic to individual regions is largely consistent with untargeted scanning. < 10% regional targeting
(F13) Some sophisticated scanners precisely target physical regions within cloud IP blocks. 4⇥ background rate for region/port
(F14) Scanners show minimal preference to groups of regions in similar geographies. 0.02 lower overlap in same-geography

Optimizing Collection (Section 7)
(F15) Observed traffic increases over time after instance deployment, but only to a point. 67% increase
(F16) Scanners targeting ORION are less likely to be reactive. 34% increase
(F17) Short-lived use of IP addresses maximizes economical yield of new behavior. < 10min for max yield
(F18) Extended measurement on a given IP is not necessary to achieve high coverage. 90% IP coverage at 72 minutes

traffic is largely consistent with random scanning or backscat-
ter, our analysis shows that DSCOPE receives 450⇥ as much
cloud-targeted traffic as would be expected under random
scanning. Further, DSCOPE’s interactivity and movement
through the IP space allows characterization of scanners
reactive to the service lifecycle. Specifically, our statistical
analysis identifies scanners reactive to interactivity from
DSCOPE and demonstrates information-flow relationships
between initial and follow-up scans.

Focusing on DSCOPE’s deployment, we study how IP
addresses within AWS differ in traffic phenomenon. We find
that scanner targeting is relatively homogeneous across cloud
regions. Surprisingly, we find that much of the observed
cloud-targeted traffic is correlated with when, not where, AWS
provisioned IP address space: IP addresses recently acquired
by Amazon receive traffic from 21% fewer scanners than
long-standing IP ranges. This suggests that, not only are scan-
ners targeting cloud IP address ranges, but the IP lists used
in this targeting are in many cases outdated or hard-coded.

Finally, we seek to understand optimal strategies for cloud
telescope deployment. By estimating the overall distribution
of traffic timing towards cloud services and accounting for
the fixed and variable costs of deployment, we demonstrate
that an adaptive telescope strategy that moves between IP ad-
dresses achieves remarkably high coverage in very little time.
Indeed, our results suggest that optimal price performance
is achieved in under 8 minutes, and 90% of the steady state
traffic to a given IP address will be seen after only 72 minutes.

Cloud-based measurement provides a new capability
for understanding scanning and attack phenomena on the
Internet and opens access to data previously only available to
connected organizations. By sharing our collection method-
ology, we anticipate that subsequent studies can use our data
and techniques to answer new measurement questions and
provision countermeasures more rapidly and effectively.

2 Background

Measurement-based studies of Internet traffic and systems
have provided important insights on performance [6] and
security [21]. Standard techniques for measurement-based
study of security-related issues include: (1) instrumenting
deployed systems [14, 36, 40], (2) deploying specialized
systems in the network [10, 35], (3) harnessing existing data
feeds [7, 44], and (4) active probing [13].

In the space of (IP) endpoint measurement, conventional
techniques can be broadly categorized into telescopes (sys-
tems deployed on unused IP addresses that passively collect
traffic from the broader Internet) and honeypots (interactive
systems deployed on unused IP addresses that emulate real
systems to elicit interesting/adversarial behavior). Telescopes
have been deployed on large IP address blocks, which in
turn require expensive hardware and complex techniques
to manage the flood of incoming traffic [11]. Studies that
have developed monitoring systems that are interactive and
scalable [5, 47] align with our goals and inform our work.
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traffic is largely consistent with random scanning or backscat-
ter, our analysis shows that DSCOPE receives 450⇥ as much
cloud-targeted traffic as would be expected under random
scanning. Further, DSCOPE’s interactivity and movement
through the IP space allows characterization of scanners
reactive to the service lifecycle. Specifically, our statistical
analysis identifies scanners reactive to interactivity from
DSCOPE and demonstrates information-flow relationships
between initial and follow-up scans.

Focusing on DSCOPE’s deployment, we study how IP
addresses within AWS differ in traffic phenomenon. We find
that scanner targeting is relatively homogeneous across cloud
regions. Surprisingly, we find that much of the observed
cloud-targeted traffic is correlated with when, not where, AWS
provisioned IP address space: IP addresses recently acquired
by Amazon receive traffic from 21% fewer scanners than
long-standing IP ranges. This suggests that, not only are scan-
ners targeting cloud IP address ranges, but the IP lists used
in this targeting are in many cases outdated or hard-coded.

Finally, we seek to understand optimal strategies for cloud
telescope deployment. By estimating the overall distribution
of traffic timing towards cloud services and accounting for
the fixed and variable costs of deployment, we demonstrate
that an adaptive telescope strategy that moves between IP ad-
dresses achieves remarkably high coverage in very little time.
Indeed, our results suggest that optimal price performance
is achieved in under 8 minutes, and 90% of the steady state
traffic to a given IP address will be seen after only 72 minutes.

Cloud-based measurement provides a new capability
for understanding scanning and attack phenomena on the
Internet and opens access to data previously only available to
connected organizations. By sharing our collection method-
ology, we anticipate that subsequent studies can use our data
and techniques to answer new measurement questions and
provision countermeasures more rapidly and effectively.

2 Background

Measurement-based studies of Internet traffic and systems
have provided important insights on performance [6] and
security [21]. Standard techniques for measurement-based
study of security-related issues include: (1) instrumenting
deployed systems [14, 36, 40], (2) deploying specialized
systems in the network [10, 35], (3) harnessing existing data
feeds [7, 44], and (4) active probing [13].

In the space of (IP) endpoint measurement, conventional
techniques can be broadly categorized into telescopes (sys-
tems deployed on unused IP addresses that passively collect
traffic from the broader Internet) and honeypots (interactive
systems deployed on unused IP addresses that emulate real
systems to elicit interesting/adversarial behavior). Telescopes
have been deployed on large IP address blocks, which in
turn require expensive hardware and complex techniques
to manage the flood of incoming traffic [11]. Studies that
have developed monitoring systems that are interactive and
scalable [5, 47] align with our goals and inform our work.
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traffic is largely consistent with random scanning or backscat-
ter, our analysis shows that DSCOPE receives 450⇥ as much
cloud-targeted traffic as would be expected under random
scanning. Further, DSCOPE’s interactivity and movement
through the IP space allows characterization of scanners
reactive to the service lifecycle. Specifically, our statistical
analysis identifies scanners reactive to interactivity from
DSCOPE and demonstrates information-flow relationships
between initial and follow-up scans.

Focusing on DSCOPE’s deployment, we study how IP
addresses within AWS differ in traffic phenomenon. We find
that scanner targeting is relatively homogeneous across cloud
regions. Surprisingly, we find that much of the observed
cloud-targeted traffic is correlated with when, not where, AWS
provisioned IP address space: IP addresses recently acquired
by Amazon receive traffic from 21% fewer scanners than
long-standing IP ranges. This suggests that, not only are scan-
ners targeting cloud IP address ranges, but the IP lists used
in this targeting are in many cases outdated or hard-coded.

Finally, we seek to understand optimal strategies for cloud
telescope deployment. By estimating the overall distribution
of traffic timing towards cloud services and accounting for
the fixed and variable costs of deployment, we demonstrate
that an adaptive telescope strategy that moves between IP ad-
dresses achieves remarkably high coverage in very little time.
Indeed, our results suggest that optimal price performance
is achieved in under 8 minutes, and 90% of the steady state
traffic to a given IP address will be seen after only 72 minutes.

Cloud-based measurement provides a new capability
for understanding scanning and attack phenomena on the
Internet and opens access to data previously only available to
connected organizations. By sharing our collection method-
ology, we anticipate that subsequent studies can use our data
and techniques to answer new measurement questions and
provision countermeasures more rapidly and effectively.

2 Background

Measurement-based studies of Internet traffic and systems
have provided important insights on performance [6] and
security [21]. Standard techniques for measurement-based
study of security-related issues include: (1) instrumenting
deployed systems [14, 36, 40], (2) deploying specialized
systems in the network [10, 35], (3) harnessing existing data
feeds [7, 44], and (4) active probing [13].

In the space of (IP) endpoint measurement, conventional
techniques can be broadly categorized into telescopes (sys-
tems deployed on unused IP addresses that passively collect
traffic from the broader Internet) and honeypots (interactive
systems deployed on unused IP addresses that emulate real
systems to elicit interesting/adversarial behavior). Telescopes
have been deployed on large IP address blocks, which in
turn require expensive hardware and complex techniques
to manage the flood of incoming traffic [11]. Studies that
have developed monitoring systems that are interactive and
scalable [5, 47] align with our goals and inform our work.
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traffic is largely consistent with random scanning or backscat-
ter, our analysis shows that DSCOPE receives 450⇥ as much
cloud-targeted traffic as would be expected under random
scanning. Further, DSCOPE’s interactivity and movement
through the IP space allows characterization of scanners
reactive to the service lifecycle. Specifically, our statistical
analysis identifies scanners reactive to interactivity from
DSCOPE and demonstrates information-flow relationships
between initial and follow-up scans.

Focusing on DSCOPE’s deployment, we study how IP
addresses within AWS differ in traffic phenomenon. We find
that scanner targeting is relatively homogeneous across cloud
regions. Surprisingly, we find that much of the observed
cloud-targeted traffic is correlated with when, not where, AWS
provisioned IP address space: IP addresses recently acquired
by Amazon receive traffic from 21% fewer scanners than
long-standing IP ranges. This suggests that, not only are scan-
ners targeting cloud IP address ranges, but the IP lists used
in this targeting are in many cases outdated or hard-coded.

Finally, we seek to understand optimal strategies for cloud
telescope deployment. By estimating the overall distribution
of traffic timing towards cloud services and accounting for
the fixed and variable costs of deployment, we demonstrate
that an adaptive telescope strategy that moves between IP ad-
dresses achieves remarkably high coverage in very little time.
Indeed, our results suggest that optimal price performance
is achieved in under 8 minutes, and 90% of the steady state
traffic to a given IP address will be seen after only 72 minutes.

Cloud-based measurement provides a new capability
for understanding scanning and attack phenomena on the
Internet and opens access to data previously only available to
connected organizations. By sharing our collection method-
ology, we anticipate that subsequent studies can use our data
and techniques to answer new measurement questions and
provision countermeasures more rapidly and effectively.

2 Background

Measurement-based studies of Internet traffic and systems
have provided important insights on performance [6] and
security [21]. Standard techniques for measurement-based
study of security-related issues include: (1) instrumenting
deployed systems [14, 36, 40], (2) deploying specialized
systems in the network [10, 35], (3) harnessing existing data
feeds [7, 44], and (4) active probing [13].

In the space of (IP) endpoint measurement, conventional
techniques can be broadly categorized into telescopes (sys-
tems deployed on unused IP addresses that passively collect
traffic from the broader Internet) and honeypots (interactive
systems deployed on unused IP addresses that emulate real
systems to elicit interesting/adversarial behavior). Telescopes
have been deployed on large IP address blocks, which in
turn require expensive hardware and complex techniques
to manage the flood of incoming traffic [11]. Studies that
have developed monitoring systems that are interactive and
scalable [5, 47] align with our goals and inform our work.

Coverage

Interactivity

Validity

Cost

Results: 18 findings on cloud-based Internet measurement
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Coverage: Is Internet Scanning Random?
Recall: Null-Hypothesis of Random Scanning

IPv4 Address Space
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Coverage: Is Internet Scanning Random?

Random
Scanning 

Cloud Targeting (450x expected)

DSCOPE collects a new 
class of traffic that is 

invisible to conventional 
telescopes.

Recall: Null-Hypothesis of Random Scanning



Coverage: Is Internet Scanning Sequential?

Question: Are IPs near ORION 
more likely to share traffic?

Answer: No difference
 (not sequential)

DScope: A Cloud-Native Internet Telescope
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IPv4 /8 around Merit’s ORION telescope:

ORION

DSCOPE



IPv4 Address Space
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Interactivity: Service Lifecycle and follow-on scans

Does interactivity induce adversarial response?
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Figure 6: CDFs of first-arrival-times from most aberrant
source IPs (by KS-test p-value). Lower cluster represents de-
layed scanning, while upper cluster represents leading traffic.

maximize coverage (Section 7). Note that, even when traffic
arrival times follow some pattern, IP addresses are allocated
randomly, so the arrival time is still random with respect
to the time IPs are allocated.

Characterizing Random Behavior Because random client
behavior is the most readily modeled, we begin by validating
the assumption that observed client behavior follows this
distribution. Suppose some client (e.g., a source IP address
or ASN) connects randomly via a Poisson process to a
subset of the IPs observed. For a given IP address allocated
for measurement, the time-to-first-contact from that client
will follow an exponential distribution. Further, suppose we
measure a given IP for a fixed duration m. For clients that do
connect to our IP address within that duration, the time they
are first observed will follow a right-truncated exponential
distribution [12] with the following density function:

fT (t) =
le�lt

1� e�lm (0 <= t <= m)

where m is the maximum collection duration. If a client is
not observed on a given IP address during the measurement
window there are two possibilities: (1) the client would
have connected at a future time t > m, or (2) the client
would never have connected. Given this distribution, and
the times of first observation for some client on all measured
IPs, we can perform a parameter estimation of l using
maximum-likelihood-estimation.

Identifying Non-random Behavior With our model of
random behavior established, we identify when client traffic
does not follow this pattern. For a given client (IP address or
ASN), we compute a null-hypothesis arrival time distribution

using MLE, then perform a Kolmogorov-Smirnov test1
of arrival times against that distribution. This statistical
test evaluates the null hypothesis that the arrival times are
exponential-distributed with the estimated parameter, and low
p-values reject the null hypothesis and suggest the data is not
exponential-distributed. Because our IP allocations are ran-
domly distributed in time, a client showing non-exponential
behavior must be leveraging information about the server be-
fore connecting, such as traffic measured by another client or
targeting a specific IP address range. In this way, DSCOPE’s
collection architecture offers a unique opportunity to
rigorously characterize the time-series behavior of scanners.

Finding 6 - While the majority of traffic is consistent with
random scanning, some IPs demonstrate clearly non-random
behavior. Applying our test statistic to inbound traffic finds
that the vast majority of source addresses (99.99%) exhibit
Poisson scanning. 25 addresses reject the null hypothesis
at p < 0.0001, implying that scanning activity is not Poisson
distributed. Plotting these first-arrival-times from these
IPs (Figure 6) shows a stark contrast with expected Poisson
behavior. Despite being only 0.01% of source IPs observed,
these sources account for 1.7% of overall traffic. It is likely
that additional traffic is also non-random and would be
identified by analyzing DSCOPE’s data over a longer period.

We see two distinct modalities of non-Poisson traffic:

1. Delayed scanning. Traffic is delayed from the expected
distribution. This may be caused by the scanner
reacting to scans from some other source. For instance,
a command-and-control server for a botnet could
receive initial scanning results and then perform more
targeted scans. 11 sources were statistically significant
delayed scanning.

2. Leading traffic. Traffic exhibits high-rate Poisson
behavior, but also has lower-rate behavior. The most
likely explanation of this is that the scanner is scanning
different IP ranges at differing rates. 14 sources were
statistically significant for leading traffic.

Leading traffic shows substantial overlap with scanner IPs
seen by Merit. As this traffic is not reactive to service lifecycle,
a non-responsive telescope could still receive such traffic due
to heterogeneous targeting of the IPv4 address space by a scan-
ner. However, the ability to characterize such traffic is only
possible because of DSCOPE’s varied IP address footprint.

1Note that while use of a KS test against distributions with estimated pa-
rameters is not valid in general, the induced error for an exponential distribu-
tion has been well-characterized and is not material at the p-values used [33].

Approach: Goodness-of-fit (K-S) test

Botnet (Random)

Adversary

Interactivity: Service Lifecycle and follow-on scans

Does interactivity induce adversarial response?
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Cloud Traffic Distributions & Statistical Validity

Challenge: Every cloud IP is unique:
• IP address history
• Latent configuration

DSCOPE’s large footprint 
allows for elimination of 

confounding factors.
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Geographic Targeting: An Example

���

���

Figure 10: Hilbert diagram of traffic towards port 445 seen
by DSCOPE 3.0.0.0/8 IP addresses during the study. IPs
assigned to the ap2 region are highlighted in blue. White
areas were not measured by DSCOPE.
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Figure 11: Overlap of source IPs observed between regions.

(Figure 10) shows elevated scanner traffic in one region, with
no spill-over to neighboring parts of the IP space. As this
traffic is sourced from many IP addresses across geographies
and has defined time ranges, it is highly suggestive of an
adversary centrally controlling many endpoints and using
published AWS IP ranges to specifically target regions.

6.3 Geographic Targeting
To evaluate whether scanners preference geographic groups
of regions, we analyze the overlap coefficient between
scanning IPs targeting each region. Given regions with
correlated scanning behavior, we would expect to see higher
overlaps between these regions than other pairs in the data.

Finding 14 - Scanners show minimal preference to groups
of regions in similar geographies. Our results (Figure 11)
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Figure 12: Median unique source IP addresses per telescope
IP by hour of day (UTC). Global regions show similar
aggregate trends regardless of local time zone.

show no notable increases in overlap between regions within
the same geography. Looking at the three geographies
with multiple regions (ap, eu, and us), the mean overlap
coefficient between same-geography regions is 0.50 vs
0.52 for different-geography regions–further demonstrating
the lack of same-geography scanning preference.

6.4 Time Variance Across Regions
Cloud regions exist largely to position compute resources
near end-users, and so legitimate traffic to these regions
would be expected to align with the waking hours of nearby
users. However, in scan traffic to cloud IPs we see no such
correlation. Figure 12 shows median inbound traffic across
studied geographies. From this, we see clear parallel trends
across geographies, with minimal time-based regional pref-
erence. This suggests that scanning is being performed across
regions without regard to underlying geography. Further, the
lack of geographic dependence suggests that the bulk of data
received by our telescope is some form of scan traffic, rather
than legitimate clients attempting to connect to that region.

7 Efficient Cloud Measurement

Because DSCOPE relies on achieving high coverage
through random sampling of the cloud IP address spaces,
two questions arise compared to existing telescopes and
cloud-deployed honeypots: (1) do short-lived deployments
to IP addresses obtain adequate coverage of the phenomena
targeted at that IP, and (2) how should DSCOPE deploy
to addresses to ensure maximum coverage at minimum cost?
To characterize these, we leverage our prior observation
that the bulk of traffic observed by DSCOPE is randomly
distributed across time. From this, we can characterize
the distribution of scanning behavior over time and estimate
the coverage achieved by telescopes of limited collection

Hilbert Diagram of port 445 traffic seen by 3.0.0.0/8 IP addresses

ap2 region 



Cost Optimization: How long should DSCOPE hold IPs?
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Goal: Max coverage with min cost (IP-hours)
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DSCOPE’s deployment 
can optimize for 

coverage or yield of 
Internet phenomena.

Goal: Max coverage with min cost (IP-hours)

Cost Optimization: How long should DSCOPE hold IPs?



DSCOPE achieves:
Representative Traffic and Global Coverage

Interactivity & Service Lifecycle

Agility through IP Space

Price Performance

Useful data…?



DSCOPE.ORG and Open Data

• Data Products
• Standard formats (JSON, PCAP)
• 2+ years of data (more daily)
• Data sharing agreements WIP

• Interactive Visualizations
• Emergent Threats
• Cloud Scanning
• Deployment Health



What data does DScope provide?

• Broad Application-layer traffic

• Cloud-targeted phenomena

• General-purpose telescope data



App-layer Data: Vulnerabilities

Data: Traffic matches against IDS rulesets

Analyses:
• CVE trends
• Exploit Sources



App-Layer Data: Is DScope representative?
The CVEWaybackMachine: Measuring CVD from Exploits Against 2 Years of Zero-Days Conference’17, July 2017, Washington, DC, USA

Figure 4: CDF of CVE impact for studied CVEs vs. all
CVEs from 2021-2023. KEV CVEs are discussed in
Section 7. Studied CVEs skew towards higher impact.

vulnerabilities are also represented. We argue that the e�ect
of this on our results is at worst neutral or even positive, as
high-impact CVEs have the highest potential for immediate
opportunistic exploitation by adversaries, and these vulnera-
bilities are therefore the most important to study and defend.
Finding 4 - IDS-based CVE measurement is not limited to IDS
vendor disclosures. One possible concern with using IDS
data vendor for CVE detection is that vulnerability lifecycles
could be impacted by that vendor’s disclosure process. Indeed,
Cisco performs independent security research and discloses
vulnerabilities in addition to releasing IDS rules. However,
the distribution of CVEs in our dataset shows this is not the
case: Only 5 of 63CVEswere originally disclosed byCisco.We
identi�ed 19 CVE assignees across studied CVEs. Assignees
ranged from open source repositories and representatives of
bug bounty programs (e.g., GitHub, HackerOne), to software
vendors (e.g., Apache, Atlassian) and security analysis organi-
zations (e.g., Fortinet, Tenable). We conclude that our dataset
is representative across sources of disclosed vulnerabilities.
While the distribution of these CVEs by announcement

date is roughly uniform across the study window (Figure 3),
we see an increase in raw number of exploit payloads over
time (Figure 1). Normalizing tra�c relative to CVE publica-
tion date (Figure 2) we see an explanation: while there is a
spike in tra�c targeted at a given CVE immediately after pub-
lication, there is still sustained tra�c formonths or years after
�xes have been released. As a result, our dataset contains an
increasing rate of matching tra�c over time.

Takeaways. From our overall analysis of collected data, we
conclude thatK����’s vantage point collects a representative
sample of CVE-targeted tra�c suitable for analyzing coor-
dinated disclosure. Collected data is diverse across targeted
system, impact, vendor, and disclosure process, and CVEs are
distributed over the course of the study. With the represen-
tativity of our collected data established, we next continue by
evaluating the e�cacy CVD strategies and models.

� V F D P X A

V - r r d d d
F - - r d d d
D - - - d d d
P u u u - d d
X u u u u - d
A u u u u u -

(a) Householder & Spring [20]

� V F D P X A

V - r r r r d
F - - r d d d
D - - - d d d
P - u u - r d
X - u u - - d
A u u u u u -

(b) This work

Table 3: CVE timeline desiderata as presented by
Householder and Spring [20] and as restricted by our
collectionmethodology. Cells represent desirability (d),
undesirability (u), requirements (r) and impossibility
(-) of the row event preceding the column event. For
instance, the top-right corner shows+ � � as desirable.

5 MEASURINGCVD EFFECTIVENESS
Based on K����’s dataset, we can measure performance with
respect to the CVE lifecycle. For this, we use a framework
discussed by Householder and Spring [20] (Section 2.2). Re-
call that this framework de�nes 6 events in the CVE lifecycle:
vendor awareness (+ ), �x ready (� ), public awareness (% ), �x
deployed (⇡), exploit public (- ), and attacks (�). Householder
and Spring de�ne several desirable orderings of these events
(desiderata, Table 3) based on an analysis of the risks posed by
each. For instance, it is clearly desirable for Vendor awareness
to predate attacks by an adversary. By analyzing our collected
data, we can evaluate these desiderata on a representative
sample of critical vulnerabilities.
To evaluate desiderata, we proceed by establishing de�n-

itive timestamps for various CVE events. This can be done
using collected data, third-party datasets, or heuristic com-
binations thereof:
(1) (+ ) Vendor Awareness is the earliest of public awareness,

�x availability, or known disclosure dates (e.g., from
Cisco).

(2) (� ) Fix Available is based on IDS rule availability.
(3) (⇡) Fix Deployed is based on the assumption of imme-

diate installation of IDS rule updates.2
(4) (%) Public Knowledge is based on an academic dataset

of crawled CVE information sites [44].
(5) (- ) Exploit public is determinedagainbasedon the same

dataset from prior work [44].
(6) (- ) Attack is based on actual tra�c from K���� [7].

Note that this is representative of general exploit scans
of public cloud IPv4 addresses, though speci�c high-
pro�le targets may see exploits earlier.

2Non-commercial users receive IDS rules on a 30-day delay. Given the rapid
onset of both attacks and �x deployments after vulnerability publication,
these delayed rule updates drastically reduce the e�ectiveness of IDS.

7



Example: Log4Shell



Measuring Cloud Squatting

• Idea: Cloud IPs receive traffic 
intended for previous tenants

• Measurement: Identify 
vulnerable configurations 
through traffic analysis

actual traffic intended for a previous tenant) and exploitability
(i.e., ability of an adversary to receive sensitive data).

To measure the presence of latent configuration in clouds,
we developed and deployed an Internet telescope in the Ama-
zon Web Services us-east-1 region1. Using this telescope,
we provisioned over 3 million cloud servers with 1.5 million
unique IPs (⇡ 56% of the region IP address pool). We
passively collected all inbound traffic (containing 596M TCP
sessions) over 101 days starting on March 8, 2021. The scale
of this experiment and the size of the cloud studied ensure a
representative view of traffic in a commercial public cloud.

The experiment overwhelmingly confirmed our hypothesis
and demonstrated a surprising prevalence of latent configura-
tion. We received over 5 million messages directed to prior
tenants on over 27 thousand IPs that we were assigned from
cloud-managed services (e.g., SNS messaging). These mes-
sages contained sensitive data including financial transaction
metadata, customer GPS location history, and customer PII
(e.g., driver’s license data and personal addresses). Third-
party services likewise exposed sensitive data, with hundreds
of instances across 7 classes of services found vulnerable.
With respect to latent DNS configurations, we identified 5446
(second level, e.g., example.com) domains spanning 231
eTLDs (e.g., .com)—including 105 in the top 10 000 and 23
in the top 1000 list of popular domains. Moreover, the results
were observed across the entirety of cloud tenant populations:
in government, academic, and industrial (e.g., high-tech, finan-
cial, health care, and entertainment) organizations. Following
our initial disclosure, Amazon performed an internal review
of customer configurations which found latent configurations
in similar breadth and quantity in all of their regions.

Summarized in Table I, we identified traffic sourced from
4 kinds of cloud services, 7 classes of third-party services,
and DNS as sources of exploitable latent configurations.
Latent configurations of cloud services supporting messaging,
health checks, content delivery and generalized API controls
were observed. We also found that third-party services can
produce latent configurations as diverse as the applications
they support. Here, we found cases of latent configurations
in databases, distributed caches, logging, and many others.
Lastly, we found many cases of poorly managed DNS leading
to exploitable organizations.

We contacted Amazon AWS in June of 2021 and have
since worked with them to support coordinated disclosures and
develop mitigations. We are also working with US government
agencies and other cloud providers to support detection and
disclosure (see Appendix A). We conducted virtual meetings
with select tenants for disclosure and to discuss root causes.
Broadly, the root causes identified include, (a) a lack of
organizational control over cloud accounts, (b) poor service
hygiene (e.g., poor or uncontrolled management of service
configurations), and (c) failure of engineers/departments to
follow organizational policies and best practices, and (d) in-

1We selected the AWS us-east-1 region because of its size and diversity.
We expect similar results in any public cloud, as many root causes are
unrelated to AWS or its services.
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Fig. 1: Exploiting IP Reuse—  A client is configured to
connect to a tenant’s service. À After the service is retired,
an adversary provisions a server and is granted an IP address
previously assigned to the tenant. Ã The client connects to the
adversary-controlled server. Õ The adversary receives traffic
intended for the tenant, infers the intended service from the
client traffic, and exploits it. Note that 203.0.113.15 is
reserved for example usage by IANA.

complete automation. Both our measurement study and tenant
disclosures were covered by an IRB exemption from our host
institution, and followed ethical considerations consistent with
contemporary works in network measurement.

Lastly, we have developed and evaluated a set of mitigations
to prevent latent configuration vulnerabilities and reduce an
adversary’s ability to acquire IPs associated with vulnerable
tenants. Existing best practices, such as cloud configuration
auditing tools, reserved IP blocks, and managed configuration
can prevent latent configuration when properly used by ten-
ants. However, even when tenants are unable to adopt new
best practices, changes to the IP allocation pool can prevent
adversaries from successfully carrying out a cloud squatting
attack. We introduce such a technique, which we name IP
Tagging, reducing adversaries’ access to tenant IPs by 99.94%
over the current cloud IP pool allocation strategy. In response
to our disclosures and their own internal review of customer’s
configurations, Amazon is updating best practices to advise
customers and providing additional guidance within the user
experience of certain services (Section VII-C).

II. BACKGROUND

We study the prevalence of security risks associated with
cloud-application configuration. It lies at the intersection of
three bodies of work: network telescopes, architecture of
public clouds, and configuration management. We provide
background on each, then discuss the problems surrounding IP
reuse in public clouds that motivate our measurement study.

A. Internet Telescopes
Internet telescopes are systems designed to observe network

events for large-scale analyses [18], [19], [20], [21]. Tele-



Cloud Squatting: Vulnerability at Scale
Third-Party Services
• >3M messages
• Numerous Services

DNS
• 5400 Websites
• 23 top-1000

Example Sensitive Data Received
Financial Personal Location Remote Code 

Execution Passwords Images

Cloud Services
>5M messages
4 cloud services



General-Purpose Telescope Data

• Raw PCAPs
• Application layer or synthetic-darknet
• Limited to TCP traffic

• Scanning Events
• Caveats: non-linear address space



Building Future Vantage Points

Goal: Quality > Quantity
• DScope achieves quality by using diverse cloud IPs
• Fewer IPs yield more representative phenomena
• What are we trying to gain coverage of?

Approach: Increase footprint diversity
• Spread across operators, geographies, services
• Collaborations with industry to instrument networks
• Get in touch for more details!



Thanks!

DScope.org

epauley@cs.wisc.edu


