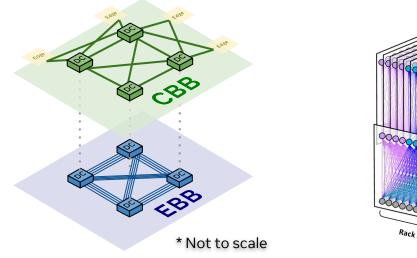
QoS at Meta ... and one way it went wrong

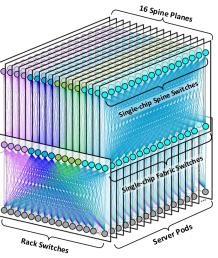
Ashley Hatch Network Engineer

01 Overview of Meta's Networks

02 Our QoS Journey and Policy

Agenda


03 Results and Lessons Learned


04 A Story of How It Once Failed

01 Overview of Meta's Networks

Meta's Networks

- Datacenter Large multi-dimensional fabrics
- Express Backbone (EBB) Intercontinental in-house SDN for DC-DC traffic
- Classic Backbone (CBB) Intercontinental RSVP-TE network for DC to Edge peering
- Edge Globally distributed CDN edge networks in colocation facilities

02 Our QoS Journey and Policy

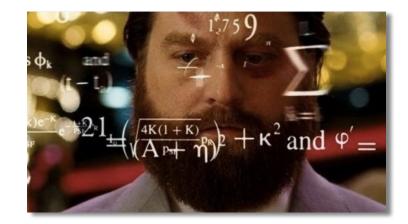
The Need For QoS - Managed Unfairness

- Where possible, overbuild for failures and down capacity
- Where unavoidable... QoS!
 - Demands can grow faster than we can build
 - Failures (Weather, Hardware, Power, Sprinklers, Trees, Rifles, Squirrels...)
 - Upgrades and migrations

"All bits are equal, but some are more equal than others." - Unknown

The Path to Unified QoS

- Self assigned prioritization
- Important services request special treatment
- Different chipsets and platforms
- Queue configurations and buffer allocations
- Pain = Prioritization


QoS for Everyone!

- Different topologies
- Different platforms/chipsets
- Different hardware generations
- Different traffic demands
- Different traffic engineering
- Different product groups

QoS - KISS

- Stacked strict priority
 - Strict-priority Waterfall in backbones
 - WRR in some layers, heavily biased
- Rare buffer tuning
- End-to-end treatment normalized hop-by-hop
- Host marking using DSCP/TC
- Centralized service database with enforcement

Olympic QoS - One Plan To Rule Them All


Five traffic classes mapped to hardware queues

- Network Control IGPs, BGP
- Platinum Platform control plane
- Gold Critical product services
- Silver Default services
- Bronze Cost optimized bulk services

Olympic QoS - Floodgate

- Disaster recovery control
- Enforce traffic quota per service
- Flow by flow accounting
- Berkeley Packet Filters (BPF)
 - Flow-by-flow remarking

03 Results and Lessons Learned

Olympic QoS - Lessons Over the Years

- Someone has to say NO!
- QoS interacts strongly with Traffic Engineering
 - Fill links lightly with critical traffic
 - Pack links with less important traffic
- Strict queuing is easy to reason and explain
- Avoid endless reoptimization cycles

Olympic QoS - Success!

- We, almost, never drop Platinum traffic
 - Buffers to down interfaces
 - Packets on cut fibers
 - Old labels during convergence
- We don't spin on queues or tuning
- Occasionally, we have a 5 year old bug

04 A Story of How It Once Failed

Hunting the Elusive Out-of-Order

Production Engineer complains about OOO packets in Platinum

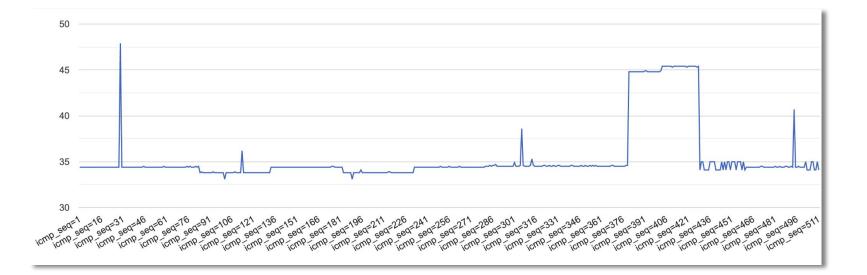
- Impacting critical global database synchronization
- Out-of-order packets?
 - Pathing changes?
 - BGP
 - Traffic Engineering
 - Hashing failures
- Loss.. in Platinum???

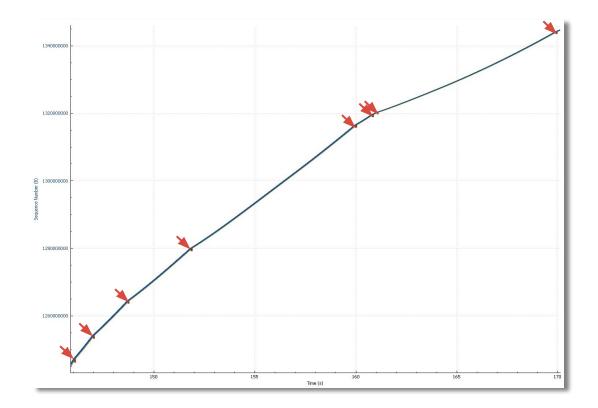
Tooling and signals

Service/Host Metrics

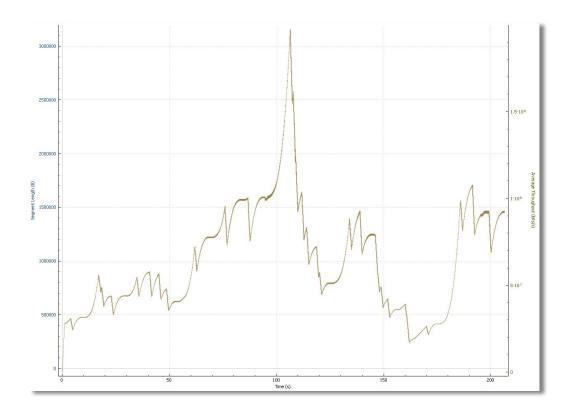
Database lag Host ooo counters Source and destination sites

Dashboards/Data


EBB dashboards NetNORAD Server packet sampling Device telemetry data


Custom Tools

tcpdump + Wireshark iPerf triangulation Targeted iPerf + ACL logging


ICMP - Basic RTT (pathing) Tracking

tcpdump + Wireshark (tcptrace)

tcpdump + Wireshark (throughput)

About out-of-order

!

[user@tools ~]\$ netstat -s | grep -C2 TCPOFOQueue TCPReqQFullDoCookies: 102869 TCPRcvCoalesce: 7480666215 TCPOFOQueue: 19877257 TCPOFOMerge: 2855 TCPOFOMerge: 2855 TCPChallengeACK: 1001338

- OFO = Out Of Order
- TCPOFOQueue means there was a gap in TCP sequences
- Delayed delivery repaired on delivery without duplicate ACK
 - 10, 11, 12, **GAP**, 14, 15, **13** (**DELAYED**), 16, 17, 18, 19, 20
- Lost packet Repaired when receiver sends a duplicate ACK
 - 10, 11, 12, **GAP**, 14, 15, 16, (**DUP ACK**), 17, 18, 19, 13 (**RETRANSMIT**), 20

iPerf Triangulation - Setup

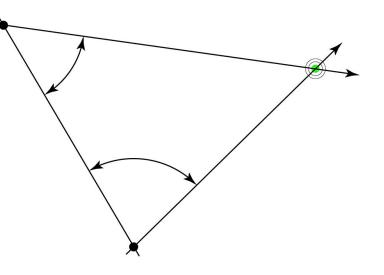
[user@tools ~]\$ iperf3 -u -p 5201 -S 140 -i 10 -t 10 -c 2001:db8::9a30:1 -B 2001:db8::2148:1 -b 5m -P 128 Connecting to host 2001:db8::9a30:1, port 5201 [5] local 2001:db8::2148:1 port 39985 connected to 2001:db8::9a30:1 port 5201 [7] local 2001:db8::2148:1 port 48388 connected to 2001:db8::9a30:1 port 5201 [9] local 2001:db8::2148:1 port 59213 connected to 2001:db8::9a30:1 port 5201 [11] local 2001:db8::2148:1 port 41572 connected to 2001:db8::9a30:1 port 5201 [13] local 2001:db8::2148:1 port 53198 connected to 2001:db8::9a30:1 port 5201 [15] local 2001:db8::2148:1 port 58742 connected to 2001:db8::9a30:1 port 5201 [17] local 2001:db8::2148:1 port 38742 connected to 2001:db8::9a30:1 port 5201 [17] local 2001:db8::2148:1 port 38742 connected to 2001:db8::9a30:1 port 5201 [17] local 2001:db8::2148:1 port 38768 connected to 2001:db8::9a30:1 port 5201 [19] local 2001:db8::2148:1 port 38241 connected to 2001:db8::9a30:1 port 5201 [21] local 2001:db8::2148:1 port 57208 connected to 2001:db8::9a30:1 port 5201 [23] local 2001:db8::2148:1 port 42364 connected to 2001:db8::9a30:1 port 5201 [23] local 2001:db8::2148:1 port 42364 connected to 2001:db8::9a30:1 port 5201 [25] local 2001:db8::2148:1 port 36711 connected to 2001:db8::9a30:1 port 5201 [27] local 2001:db8::2148:1 port 36711 connected to 2001:db8::9a30:1 port 5201

- UDP Mode Pure loss, no TCP effects, unidirectional
- 128 wide Sample lots of paths, chance for intersection
- Provides source, destination IP and port for tracing later
- Mark with correct DSCP

iPerf Triangulation - Detection

I	[ID]	Interval		Transfer	Bitrate	Jitter	Lost/Total Datagrams	
I	[5]	0.00-10.00	sec	5.96 MBytes	5.00 Mbits/sec	0.000 ms	0/4377 (0%) sender	
I	[5]	0.00-10.00	sec	5.96 MBytes	5.00 Mbits/sec	0.067 ms	0/4377 (0%) receiver	
I	[7]	0.00-10.00	sec	5.96 MBytes	5.00 Mbits/sec	0.000 ms	0/4377 (0%) sender	
ſ	[7]	0.00-10.00	sec	5.96 MBytes	5.00 Mbits/sec	0.069 ms	0/4377 (0%) receiver	
I	[9]	0.00-10.00	sec	5.96 MBytes	5.00 Mbits/sec	0.000 ms	0/4377 (0%) sender	
I	[9]	0.00-10.00	sec	5.96 MBytes	5.00 Mbits/sec	0.071 ms	0/4377 (0%) receiver	
ľ	[11]	0.00-10.00	sec	5.96 MBytes	5.00 Mbits/sec	0.000 ms	0/4377 (0%) sender	
I	[11]	0.00-10.00	sec	5.96 MBytes	5.00 Mbits/sec	0.083 ms	0/4377 (0%) receiver	
I	[13]	0.00-10.00	sec	5.96 MBytes	5.00 Mbits/sec	0.000 ms	0/4377 (0%) sender	
I	[13]	0.00-10.00	sec	5.96 MBytes	5.00 Mbits/sec	0.092 ms	0/4377 (0%) receiver	
ľ	[15]	0.00-10.00	sec	5.96 MBytes	5.00 Mbits/sec	0.000 ms	0/4377 (0%) sender	

- Loss report per flow
- Also reports OOO events (without retransmissions)
- Correlate lossy flows to src/dst IP/ports for tracing

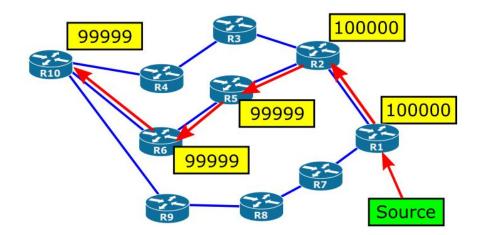

iPerf Triangulation - Tracing

[user@tools ~]\$ traceroute -q 1 -t 140 -U -p 5201 -w 0.2 -m 20 --sport=38892 2001:db8::9a30:1 traceroute to 2803:6081:608c:9a30::1 (2803:6081:608c:9a30::1), 20 hops max, 80 byte packets 1 2001:db8::a (2001:db8::a) 0.435 ms 2 eth101-11-1.fsw004.p109.f01.demo.tfbnw.net (2001:db8::10) 0.584 ms 3 fc00::2:0 (2001:db8::2:0) 20.698 ms 4 fc00::15:1 (2001:db8::15:1) 14.563 ms 5 eth8-7-1.ssw007.s004.f01.demo.tfbnw.net (2001:db8::d8) 0.479 ms 6 eth4-13-1.fa004-du007.demo.tfbnw.net (2001:db8::46) 0.339 ms 7 eth4-12-1.ssw007.s006.f01.demo.tfbnw.net (2001:db8::9b) 0.326 ms 8 eth3-13-1.fsw006.p036.f01.demo.tfbnw.net (2001:db8::40) 12.736 ms 9 eth1-26-1.rsw039.p036.f01.demo.tfbnw.net (2001:db8::40) 12.736 ms

- UDP Traceroute with the src/dst ports
- Same DSCP to ensure TE pathing
- Collect lossy paths and look for common hops

iPerf Triangulation - RESULTS!

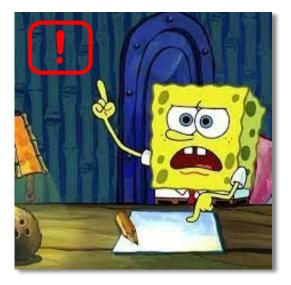
- Spans all of EBB
- No specific paths
- Doesn't cross specific hardware
- Spread out across DC, POPs, Regions, Metros
- Loss ~0.001% or 1 in 100,000 packets



iPerf + ACL - From broad to narrow

[user@tools ~]\$ iperf3 -u -p 5201 -S 140 -i 10 -t 10 -c 2001:db8::9a30:1 -B 2001:db8::2148:1 -b 100m --cport 32889 Connecting to host 2001:db8::9a30:1, port 5201 5] local 2001:db8::2148:1 port 32889 connected to 2001:db8::9a30:1 port 5201 [ID] Interval Transfer Bitrate Total Datagrams 5] 0.00-10.00 sec 119 MBytes 100 Mbits/sec 87528 ID] Interval Transfer Bitrate Jitter Lost/Total Datagrams 51 0.00-10.00 sec 119 MBytes 100 Mbits/sec 0.000 ms 0/87528 (0%) sender 5] 0.00-10.00 sec 119 MBytes 100 Mbits/sec 0.018 ms 8/87528 (0%) receiver iperf Done.

- Find a bad path using 128 wide
- Run iPerf at high rate on one tuple 60s
- Place logging ACL on all possible boxes and count packets that arrive


iPerf + ACL - From broad to narrow

- iPerf tells how many packets sent and received
- Per-hop ACL can identify multiple lossy hops

Root cause

- Zoom in on exact router(s) causing loss
- Meta engineer identifies VoQ Egress Drops
- Egress scheduler thinks it has 100Gbps, but actually has ~98Gbps
- Egress scheduler not accounting for MACSEC overhead

Hints to find the elusive

- Exhaust existing data sources
- Create new data sources and tooling
- Extend collections to catch the next one
- tcpdump, wireshark, iperf are you friends
- Zoom in and out from the general and the specific

Questions?

Meta