Automating Internet2's Nationwide Network with Cisco NSO

Karl Newell
Network Software Architect, Internet2
14-FEB-2024

Agenda

- Background
- Some History
- Migration
- Modern Times
- Keys to Success

Background

14-FEB-2024

320+ HIGHER EDUCATION MEMBERS

100+

COUNTRIES & RESEARCH NETWORKS CONNECTIONS

+000,08

COMMUNITY ANCHOR INSTITUTIONS

1000+

INCOMMON PARTICIPANTS

BY THE NUMBERS

950+

EDUROAM SUBSCRIBERS

60

AFFILIATE & GOVERNMENT MEMBERS

800G+

WAVELENGTHS OF NETWORK CAPABILITY

750+ **NET+ CLOUD CONTRACTS**

50+

INDUSTRY MEMBERS

32Tbps CAPACITY PER LINK

46 **REGIONAL & STATE NETWORKS** 350+

NET+ SUBSCRIBERS

Some History

14-FEB-2024

The Challenge

- Deploy a new nationwide network
 - Double the device count
- Change vendors
- Migrate legacy configuration

The Solution

- Cisco Network Services Orchestrator (NSO)
- Lots of Python
 - pyATS
- Google Sheets and Apps Script
- Amazing Network Engineers and Developers

What NSO Offers

- Configuration Orchestration
 - Multi-vendor support
 - Templates
 - Single config tree includes all devices
- System-wide transactions
- Coexistence with out of band changes
- Graceful evolution over time
- Command line interface

How NSO Works

- Service models
 - YANG
 - Vendor neutral
- Templates
 - XML
 - Vendor specific
- Declarative
 - NSO determines the minimal amount of changes needed to configure the device
 - Service instance deletion removes relevant configuration

Example Service Model

> show configuration services i2px-cust ALBA-TEST*

```
i2px-cust ALBA-TEST-1 {
    admin-state in-service;
    service-id
                 55668:
    entity
                 TEST;
                 ALBA-CONN-TEST-1;
    pdp
    encapsulation {
        dot1q {
            vlàn-id 1091;
    address-ipv4 192.0.2.1/30;
    address-ipv6 2001:db8::1/64;
               65505;
    remote-as
    neighbor 192.0.2.2 {
        maximum-prefix 20;
    neighbor 2001:db8::2 {
        maximum-prefix 10;
    password-md5 REDACTED;
    select-in {
        prefix 65505-CUST-V4-IN;
        prefix 65505-CUST-V6-IN;
```


How NSO Works

Why We Chose NSO

- Vendor agnostic
- Declarative configuration
 - · Service deletion removes all related configuration
- System wide commits
 - Problems don't strand broken config
- CLI
- Engineers aren't copying around their version of a configuration template
- Engineers spend less time implementing changes

Migration

14-FEB-2024

- NSO service models leveraged for service deployments
 - Minimal, simple parameters needed to produce complex device configuration
 - All changes are atomic across the network
- Layer 3 (BGP) service migrations Cisco NSO, Google Sheets
 - Imported legacy network/DB data to produce NSO-generated service config
 - Allowed migration of 2000 peerings in ~30 days (up to 150/night)

- Validation tooling for quality assurance Cisco pyATS
 - BGP prefix acceptance/rejection monitoring before and after migration
 - Allowed rapid validation of migrated service
- Test Driven Development Robot Framework
 - Rapid iteration of NSO service models with testing to deter regression
 - Decrease time needed for new service deployments

- Configuration control and monitoring
 - Manual changes on device are identified and flagged for reintegration into NSO models
 - Ensures minimal drift

- Juniper MX to Cisco 8200 (IOS-XR)
- Translate services legacy to NGI
 - Extract-Transform-Load
 - Scripts to pull config from legacy network and DB
 - Save into Google Sheet
 - Google Apps Script to convert data into NSO config
- Service validation scripts
 - pyATS

- pyATS validation scripts
 - pre and post migration BGP data (prefixes and counts)
 - diff and report anomalies

```
=== re-participant CHIC-CUST-1 (192.0.2.1) === Neighbor migrated: rtsw.chic -> core2.chic
```

	[PRE]	[POST]	
Prefix	Recv Accept	Recv Accept	INFO/Advice
192.0.0.0/24	* *	*	INVESTIGATE - route no longer being accepted
192.0.2.0/24	* *	*	INVESTIGATE - route no longer being accepted
192.168.0.0/16	* *	*	INVESTIGATE - route no longer being accepted
198.51.100.0/24	* *	*	INVESTIGATE - route no longer being accepted
203.0.113.0/24	* *	*	INVESTIGATE - route no longer being accepted

Skipped 14 routes that did not change

NSO Stats

- 30 service models (19 edge service models)
- 4,000+ service instances
- 32,047 lines of NSO service config
 - resulting in 250,282 lines of device config
- 7.81 config compression ratio
- 2,200+ commits
- 632 git merges
- 6,000+ build pipelines

Modern Times

14-FEB-2024

Service Development

- Rapid iteration with Network Engineering
 - "paper prototypes" what would an Engineer want to enter on the CLI to define a Service
- Keep Service options to a minimum don't need all the knobs
 - Reduces the amount of testing needed
- We spend a significant amount of time defining what a Service is and what input is needed to differentiate Service instances

Multi Vendor Support

- Cisco 8200 (IOS-XR)
- Cisco NCS 5500 (IOS-XR)
- Arista 7280R3
- Juniper EX 4600
- Juniper SRX 1500
- Juniper SRX 4100

User-facing Service Provisioning

- Developing the Internet2 Insight Console
 - Layer 2 and 3 circuit provisioning
 - Cloud Connections
 - Routing Intentions (prefix management)
- Looking Glass
- Future
 - Visualization and reporting of all member services
 - Management of all member services

Keys to Success

14-FEB-2024

Integrated Team

- Software Development and Network Engineering teams were tightly integrated
 - Met (and continue to meet) weekly

Developers and engineers worked together to develop service

models and implementation

Iteration

- Don't be afraid to start over
 - Some of our service models are on their third revision

Right Tools for the Job

- NSO is designed for network automation
- But NSO doesn't meet all of our needs so we use other tools as well
 - pyATS
 - Nornir
- Spreadsheets work
 - Especially coupled with scripting (Google Apps Script)

Thank you

Karl Newell
Network Software Architect, Internet2
14-FEB-2024

