Al Data Centers

Michal Styszynski & Mahesh Subramaniam Juniper Networks

^{ID 4950} February 13th, 2024 NANOG 90 – Charlotte, NC

AGENDA

- DC architectures for Existing & Modern workloads
- Lifecycle of an AI DC Network
- AI DC technologies
- Key takeaways

DC Arch.: Existing & Modern Workloads

Why is AI DC now?

- Maturity of AI ML models development:
 - AIML models became more accurate, more fluent, and more creative
 - Availability of opensource AI models increased recently
- The increasing availability of data:
 - As the amount of data available to AI models grows, so does the ability of those models to learn and improve
 - The more data an AIML model must learn from, the better it will be at generating natural language responses

Why is AI DC now?

- Technological advancements at the servers:
 - -parallel processing of the data requirement
 - -use GPU instead of serialized CPU processing
- Quick adoption of Generative AI applications by the users

Al Model - Lifecycle

Al Model - Lifecycle

Gather data

Anatomy of an AI DC Network

Al Cluster Networks

"Frontend"

- Inference clusters
- Shared storage pools
- Management

"Backend"

- GPU Compute Fabric
- Dedicated Storage Fabric

N A N O G^{**}

AI DC - Architectures

AI DC: Key capabilities:

- Efficient Load Balancing
- ROCEv2 Transport
- Congestion Mgmt
- Adaptive IP Routing
- Monitoring

AI DC - Stripe Optimized Design - SOD

AI DC - Stripe Unified Design - SUD

AI DC: Requirements

RDMA Workload : AI DC

ROCEv2 - Transport for AI DC

ROCEv2 – session establishment

DCQCN – PFC-DSCP vs ECN

PFC-DSCP Pause-level-1 PFC-DSCP Pause-level-2 PFC-DSCP PFC-DSCP Pause-level-3

AI DC - Dynamic Load Balancing

DLB (Dynamic Load Balancing) - per-packet optimal spraying

AI DC - Dynamic Load Balancing

DLB (Dynamic Load Balancing) – "flowlet" mode

400G/800G Ethernet switch

Packet **re-ordering won't happen** at the destination NIC Card connected to the GPU

AI DC - Selective Load Balancing

- Ability to selectively enable DLB via access lists for read/write operations
- It can handle out-oforder packets and enable DLB per packet mode for just that service

AI DC - Global Load Balancing

Port A

В

С

Q(A)

Q(B)

Q(C)

Port

X1

Y1

Z1

Q(X1)

Q(Y1)

Q(Z1)

- Global Load Balancing (GLB) uses path quality
- GLB selects a better end-toend path.

AI DC: Efficient load Balancing summary

IP Routing for AI DC

	eBGP	underl	ay/	overl	ay:
--	------	--------	-----	-------	-----

- underlay: eBGP unnumbered / RFC5549
- overlay: EVPN-VXLAN
- BGP unnumbered/RFC5549
- Backend IGP protocols: RIFT or ISIS

Frontend

BGP unnumbered / RFC5549

RIFT routing for backend network

N A N O G^{**}

AI DC key takeaways

- The number of new AI applications is increasing over time.
- Dedicated AI DC infrastructures are built to accelerate parallel data processing.
- Ethernet 400G/800G adoption is increasing thanks to AI
- Congestion Management & Load Balancing efficiency are the key network components in AI DC

Thank you

Feb 12-14, 2024

