
Tutorial
Breaking the Paradigm of

Traffic Engineering
Automation

NANOG90 - FEB-2024

Mau Rojas
bio.site/pinrojas

David Watkinson
bio.site/dwatkinson

Diego Achával

Abstract
• Challenges conventional network automation by highlighting an innovative, 'out-of-the-box'

approach to traffic engineering.
• Inventive alternative that combines API calls with standard systems such as PCE controllers and

SDNs.
• Illustrated through a hands-on lab using Containerlab, YANG, and Python.
• We’ll showcase an enhanced Label Switched Paths (LSP) management use case, demonstrating

how it can solve the unpredictable patterns of today’s traffic demands in WAN environments,
particularly under RSVP-TE protocols.

• Participants will gain a thorough understanding of this fresh perspective on traffic engineering
automation.

• We'll discuss how the selection of standard YANG models like IETF-TE versus vendor-specific
models.

• We'll explore the range of network configuration options, from simple Python modules to more
advanced SDN solutions, preparing participants to navigate its evolving landscape.

Agenda

• Traffic-Engineering Automation Overview [Diego]
• Advantages Over Non-IETF RSVP Extended Protocols

• Telemetry in TE Automation [David/Mau]
• Integrating PCE with Telemetry (gRPC) for a Closed Loop System

• Hands-On Lab: Automation Driven Traffic Steering [Mau]
• Core Lab Components
• Tool Comparisons (e.g., Nornir vs SDN)
• Building Python Application Components
• Utilizing IETF-TE YANG RESTCONF for Tunnel Management

Automation in Traffic
Engineering

Diego Achával

What is the problem we’re trying to solve?

MPLS (RSVP-TE/SR-TE) is a great solution for
static or even stationary traffic patterns
• However, traffic patterns become more

unpredictable and bursty with changes due
to factors such as 5G, streaming and cloud
services.
• The use of multiple LSPs, balanced via ECMP,

brings better network utilization and
resilience.
• LSPs are not elements that can be added or

removed on-demand. ? ?

??

?

Benefits

Demo App: APIs - IETF-TE Current solutions running in the box

Network Technologies RSVP-TE and SR-TE RSVP-TE

Resilience Better: Can be routed via different nodes and links
using advanced algorithms from the PCE Weak: Take the same route of the original one.

Resource Allocation
Better: Consider various factors, such as network

topology, link and node capacities, traffic demands,
and QoS requirements (PCE)

May not adapt well to changing network conditions
(limited to RSVP reservation only)

Visibility Better: Can be managed via PCE-GUI to compare LSP
routes. Easier Troubleshooting Limited. Relay on external NMS.

Trigger Bandwidth Utilization and External Events… and else Bandwidth Utilization Only

Telemetry in the context
of TE Automation

Mau Rojas
bio.site/pinrojas

David Watkinson
bio.site/dwatkinson

Intro PCE and PCC init Paths

Active Stateful PCE: PCC allows the
LSP to be delegated to PCE or a PCE
can initiate an LSP.
• PCE Init: PCE initiates an LSP and

maintains the responsibility of
updating the LSP.

• PCC Init: PCC initiates the LSP and
delegate the control later to the
PCE.

PCE

PCC

PCE Initiated Path

• Example of Simple Path
Definition via PCE
Controller APIs and
Constraints

{
"pcep-server:configured-lsp": [

{
"name": "test",
"intended-path": {

"destination": "10.2.2.2",
"source": "10.1.1.1",
"constraints": {

"bandwidth": "100000",
"class-type": 1,
"metric": 500,
"address-family": "ipv4"

}
}

}
]

}

Source: https://docs.opendaylight.org

IETF-TE YANG: PCC Initiated Path
{

"tunnel": [
{

"name": "${LSP_NAME}",
"encoding": "ietf-te-types:lsp-encoding-packet",
"admin-state": "ietf-te-types:tunnel-admin-state-up",
"signaling-type": "ietf-te-types:path-setup-rsvp",
"source": "1.1.1.1",
"destination": "1.1.1.2",
"primary-paths": {

"primary-path": [
{

"name": "hopless",
"use-path-computation": true

}
additional text have been removed for simplicity

PCE Controller

Closed Loop: PCE + Telemetry

Topology Learning
BGP-LS IGP

PCEP

Telemetry

Advanced Feature

No all PCE Solutions
Supports it!

PCE+Telemetry: Example Use Case

Managing 5G Backhaul Traffic Scenario
• 5G backhaul network connecting 5G cell sites (gNBs) to the core network.
• Requires high bandwidth, low latency, and highly reliable
• Massive amount of data traffic generated by 5G services.

Challenge
• User mobility, varying service demands, and network conditions lead to congestion

and performance degradation.
• Manage LSPs for optimal performance without causing instability (flip-flop behavior)

or overloading the network with frequent path recalculations.

PCE+Telemetry: Example Use Case

Managing 5G Backhaul Traffic Scenario
• 5G backhaul network connecting 5G cell sites (gNBs) to the core network.
• Requires high bandwidth, low latency, and highly reliable
• Massive amount of data traffic generated by 5G services.

Challenge
• User mobility, varying service demands, and network conditions lead to congestion

and performance degradation.
• Manage LSPs for optimal performance without causing instability (flip-flop behavior)

or overloading the network with frequent path recalculations.

Standard Stateful PCE Policy

Limitations:
• Reactivity: The policy may not react

quickly enough to sudden changes
leading to temporary congestion.

• Flip-Flop Behavior: Frequent path
recalculations can cause flip-flop
behavior, degrading network stability.

PCE+Telemetry: Example Use Case

Managing 5G Backhaul Traffic Scenario
• 5G backhaul network connecting 5G cell sites (gNBs) to the core network.
• Requires high bandwidth, low latency, and highly reliable
• Massive amount of data traffic generated by 5G services.

Challenge
• User mobility, varying service demands, and network conditions lead to congestion

and performance degradation.
• Manage LSPs for optimal performance without causing instability (flip-flop behavior)

or overloading the network with frequent path recalculations.

Closed Loop with Telemetry

• Comprehensive view of the network state.
• Analyzes telemetry data to detect

congestion before it impacts performance
• De-emphasize minor fluctuations that could

cause flip-flop behavior. Only significant and
sustained changes trigger rerouting.

• Properly tuned timers ensures that the
network doesn't react to every small change,
avoiding frequent path recalculations that
could overload devices.

PCE Controller

Demo: Automation Driven Traffic
Steering Topology Learning

BGP-LS IGP
PCEP

Telemetry
(i.e. Kafka,

GNMIc)

RSVP-TE
Configurator

(Ansible,
GNMIc)

Ø IETF-TE YANG

Python App

Add/Remove LSPs

Enabling LSP Stats
pccLspTemplate.json

"nokia-conf:lsp" : {
... # this is an extract

"egress-statistics": {
"admin-state": "enable"

},
"type" : "p2p-rsvp",
"from" : "10.10.10.3",
"to" : "10.10.10.8",
"pce-control" : "true",
"pce-report" : "true",
"path-computation-method" : "pce",
"metric-type" : "te",
"primary" : {

"path-name" : "hopless"
}

Demo Lab: Automation
Driven Traffic Steering

Mau Rojas
bio.site/pinrojas

Demo Lab: Automation Driven Traffic
Steering: Introduction
• Inventive alternative with Python, involving API calls with systems

like Telemetry and PCE controller, illustrated through a hands-on
lab using containerlab.

• showcase an enhanced Label Switched Paths (LSP) management
use case that can solve the unpredictable pattern of today’s
traffic demand in WAN environments
• IETF-TE YANG (IETF-TE YANG)

• Check repo at: https://github.com/cloud-native-
everything/nanog90-rsvpte-demo-lab (work in progress)

https://github.com/cloud-native-everything/nanog90-rsvpte-demo-lab
https://github.com/cloud-native-everything/nanog90-rsvpte-demo-lab

How does it work?

Telemetry
(LSP BW Utilization)

Add/Remove LSPs from ECMP
Groups
Ø RESTCONF IETF RSVP-TECustom

Closed Loop

Check State

Take Action

.YAML

PCE Controller
PCE Policies
(REST)

PCEPBGP-LS

How does it work?
• Multiple groups of RSVP-TE LSPs

• Group set is balanced via ECMP
• Every LSP is routed independently based on PCE Policies.
• Any LSPs can be rerouted depending on performance constrains defined in the

PCE policies
• Python App changes PCE Policies depending on user preferences

• Policies can be linked to multiple groups
• Combining multiple policies at once (i.e. link strict and star weight)

• Python App (Closed Loop) is constantly pulling Telemetry data
• LSP Bandwidth Utilization

• Python App adds/removes LSPs in groups depending on Telemetry Thresholds.

Clab: Bringing declarativeness to
networking labs

name: mylab

topology:
nodes:

:
:

links:
- :

IT

Ne
tw

or
k

La
bs

IaaC
tool

Clab Topology
topology:
kinds:
vr-sros:
image: vrnetlab/vr-sros:23.7.R1

links:
- endpoints: ["R1:eth1","R11:eth1"]
- endpoints: ["R1:eth2","R21:eth1"]
- endpoints: ["R1:eth3","R31:eth1"]
- endpoints: ["R2:eth1","R12:eth1"]
- endpoints: ["R2:eth2","R22:eth1"]
- endpoints: ["R2:eth3","R32:eth1"]
- endpoints: ["R11:eth2","R21:eth2"]
- endpoints: ["R21:eth3","R22:eth2"]
- endpoints: ["R22:eth3","R32:eth2"]
- endpoints: ["R32:eth3","R31:eth2"]

What network topology we use for
this demo?
• 8 Routers (SROS 23.7.R1)
• ISIS Level 1

• Topology Id 0:65000:0
• RSVP-MPLS

ECMP

PCE

Lab Components

PCE

LSP MGT

Apps
(Python)

TelemetryKAFKA
.YAML .JSON

PCEP
BGP-LS

NETCONF

GRPC

• Check on LSP Bandwidth (Kafka)
• Trigger LSP Clone based on

Thresholds (running
permanently)

• Source of Truth: Simple Input via
YAML File

RESTCONF

Lab Components
• Containerlab 0.45.1

• RSVP-TE Topology (SROS
vSIM 23.7.R1)

• Telemetry
• Apache Kafka (NSP 23.11

CN Telemetry - GNMIc)
• PCE Controller

• NSP 23.11 IP/MPLS
Optimization

• Python v3.9.6
• requests v2.31.0
• pyyaml v6.0.1
• vconfluent_kafka 2.2.0

• Configuration
Management
• IETF TE YANG RESTCONF

(NSP 23.11 MD-Config +
JSON Template)
• draft-ietf-teas-yang-te

https://datatracker.ietf.org/doc/draft-ietf-teas-yang-te/

Apache Kafka
• Created by a team of software engineers at LinkedIn.
• Distributed streaming platform that excels in handling high-throughput data

streams.
• Open-sourced in early 2011 under the Apache Software Foundation.
• Intended for processing large amounts of data in real-time
• Widely used in various industries for data integration, real-time analytics, and

event-driven architectures.
• Decoupling of Data Sources and Destinations

• Central hub for data streams, decoupling the source of data (like monitoring
systems) from the consumers of data (like analytics systems, alerting systems, etc.)

• This makes the architecture flexible and extensible.

Apache Kafka

Topic A
Partition 0

Topic A
Partition 1

Broker 1

Topic A
Partition 0

Topic A
Partition 1

Broker 0

Replicate
A/0

Replicate
A/1

Producer Consumer

Messages
A/0

Messages
A/1

Messages
A/0

Messages
A/1

Apache Kafka
{

"data": {
"ietf-restconf:notification": {

"eventTime": "2024-01-22T22:11:28Z",
"nsp-kpi:real_time_kpi-event": {

"aggregate-octets": 0,
"aggregate-octets-periodic": 0,
"aggregate-packets": 0,
"aggregate-packets-periodic": 0,
"dataType": 1,
"kpiType": "telemetry:/base/lsps/lsp-egress",
"name": "pccLspCloneTest-4-62",
"neId": "1.1.1.1",
"objectId": "/state/router[router-name='Base']/mpls/statistics/lsp-egress[lsp-name='pccLspCloneTest-4-62']",
"system-id": "1.1.1.1",
"time-captured": 1705961488602,
"time-captured-periodic": 10007

}
}

PCE Controller

Common PCE Design

Graph
Database

Path Computation Engine

R
Topology Learning

BGP-LS IGP
PCE PCEP

Apps
(Python)

REST API (Policies)

.JSON

PCE Constraints and Objectives used for all paths

• Bi-direction: NO
• Unidirectional paths only. The PCE will not

attempt to compute reverse paths that mirror
the forward paths

• Disjoint: LINK STRICT
• Computed paths should be link-disjoint

• Explicit Route Strategy: STANDARD
• PCE will follow typical routing protocols and

algorithms without any special or customized
routing considerations.

• Max Cost: Undefined
• No upper limit cost of the path being

computed (IGP Link Metric)

• Max Hops: Undefined
• There is no restriction on the number of hops

(or intermediary nodes) a path can have.

• Max TE Metric: Undefined
• There is no upper limit on this metric for the

path computation (TE Metric)

• Metric Type: STAR_WEIGHT
• 'STAR_WEIGHT’ is specific to Nokia's

implementation and could involve a
proprietary method of weighing different path
attributes

Path Computation Policy Constraints/Objectives

{
"data": {
"bidirection": "NO",
"disjoint": "LINK_STRICT",
"explicitRouteStrategy": "STANDARD",
"maxCost": 0,
"maxHops": 0,
"maxTeMetric": 0,
"name": "path_profile_here",
"objective": "STAR_WEIGHT",
"profileId": 1001,

}
} .JSON

Which LSP Configurator?

• Python Libs: pyGNMI or nccclient or nornir
• pyGNMI: Best suited for environments where devices support the gNMI protocol.
• Nornir: highly flexible and can be adapted to a wide range of network automation tasks,

making it a good choice for diverse network environments.

• SDN: Large-scale, complex network environments where a full
SDN controller can provide significant benefits in terms of
network programmability, automation, and orchestration.
• Nokia NSP MD Configurator
• OpenDayLight??

• Invoke an external App client?
• Example: GNMIc + GoTemplates

Configurator Comparison
Feature/Aspect pyGNMI Nornir SDN: NSP / ODL

Protocol Used gNMI (gRPC Network Management
Interface)

Various (SSH, NETCONF,
RESTCONF, etc.)

RESTCONF, NETCONF,
others depending on
plugins

Configuration
Language

YANG models (JSON or Protobuf
encoding)

Device-specific (CLI, XML,
JSON for
NETCONF/RESTCONF)

YANG models (XML or JSON
encoding)

Target Devices Devices supporting gNMI
Broad range of network
devices (depends on plugin
support)

Devices supported by
plugins and drivers

Scalability High (efficient binary protocol) High (parallel execution
capabilities)

Very high (SDN controller
capabilities)

Customization Limited to gNMI capabilities Highly customizable with
Python scripting

Customizable through
applications and modules

Configurator Comparison (cont)
Feature/Aspect pyGNMI Nornir SDN: NSP / ODL

Learning Curve Moderate (knowledge of gNMI and
YANG required)

Moderate (Python and
networking knowledge)

High (complex SDN
concepts architecture)

Deployment Direct connection to devices Direct connection to devices
or through an intermediary

Requires SDN controller
setup

Use Case
Suitability

Ideal for environments with gNMI
support

Versatile for various network
automation tasks

Suitable for large-scale,
complex network
environments

Community and
Support

Growing, with focus on gNMI-enabled
devices

Large and active, diverse use
cases

ODL: Large ODL, especially in
carrier networks.
NSP: Enterprise support, no
community-based

Security Secure (TLS/SSL for transport)
Depends on the protocol
used (e.g., SSH, TLS/SSL for
NETCONF/RESTCONF)

Secure (multiple security
features in SDN controller)

Example: Nornir

• Install Python Lib

• Import Modules
from nornir import InitNornir
from nornir_netconf.plugins.tasks import netconf_edit_config
from nornir_utils.plugins.functions import print_result

user@host ~% pip install nornir nornir_netconf

Example: Nornir (cont)
• inventory: Defines how Nornir will

load its inventory.
• host_file, group_file, and defaults_file

are paths to YAML files that contain
information about your network devices,
groups of devices, and default settings,
respectively.

• runner: Configures how tasks are
executed.
• threaded means tasks will be run in

multiple threads for parallel execution.
• num_workers defines the number of

concurrent threads.

inventory:
plugin: SimpleInventory
options:
host_file: "inventory/hosts.yaml"
group_file: "inventory/groups.yaml"
defaults_file: "inventory/defaults.yaml"

runner:
plugin: threaded
options:
num_workers: 20

logging:

enabled: True
level: DEBUG
file: "nornir_log.log"
format: "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
to_console: True
loggers:
["nornir.core", "nornir.plugins"]

Example: Nornir (cont)

router1:
hostname: 192.168.1.1
groups:
- nokia_routers

data:
role: edge

router2:
hostname: 192.168.1.2
groups:
- nokia_routers

data:
role: core

nokia_routers:
username: admin
password: admin
platform: nokia_sros
data:
vendor: Nokia
model: 7750
os_version: "TiMOS-B-19.10.R1"

username: admin
password: admin123

hosts.yml groups.yml

defaults.yml

Example: Nornir (cont)
Initialize Nornir with your configuration
nr = InitNornir(config_file="nornir_config.yaml")

def modify_lsp(task, operation, lsp_config):
Sending NetConf command to modify LSP
task.run(

task=netconf_edit_config,
target="candidate",
config=lsp_config

)

if operation == "add" or operation == "update":
Committing the changes if adding or updating LSP
task.run(task=netconf_commit)

Example: Nornir (cont)
{
"nokia-conf:lsp": {
"name": "LSP1",
"from": "router1",
"to": "router2",
"bandwidth": 1000000,
"path-options": {
"primary-path": "Path1",
"secondary-path": "Path2"

},
"preferences": {
"setup-priority": 7,
"hold-priority": 7

}
}

}

Example of lsp_config_add
(Hypothetical JSON for Adding an LSP
in Nokia YANG Model)

Example: OpenDayLight
import requests
import json

OpenDaylight RESTCONF API URL
odl_url = "http://<ODL_CONTROLLER_IP>:<PORT>/restconf/operations/<API_ENDPOINT>"

Headers for REST API
headers = {

"Content-Type": "application/json",
"Accept": "application/json",
"Authorization": "Basic <BASE64_ENCODED_USERNAME_PASSWORD>"

}

LSP configuration
lsp_config = {

Your LSP configuration in JSON
}

Standard Python libs

Example: OpenDayLight (cont)
def modify_lsp(operation, config):

if operation == "add":
REST API call to add LSP
response = requests.post(odl_url, headers=headers, json=config)

elif operation == "delete":
REST API call to delete LSP
response = requests.delete(odl_url, headers=headers, json=config)

elif operation == "update":
REST API call to update LSP
response = requests.put(odl_url, headers=headers, json=config)

return response

Example usage
operation = "add" # or "delete" or "update"
response = modify_lsp(operation, lsp_config)
print(response.text)

Example: OpenDayLight (cont)
{

"ietf-te:te-lsp": {
"name": "example-lsp",
"from": "routerA",
"to": "routerB",
"path-computation": {

"pcep": {
"path-computation-client": "pcc-routerA",
"requested-path-properties": {

"bandwidth": 1000000,
"objective-function": "shortest-path"

}
}

},
More on the next slide

• IETF YANG model for RSVP-TE, the
JSON structure for the lsp_config
indicates that path computation
should be handled by a PCE.

• Important Advantage of SDN
solutions is you can manage a
common YANG model (i.e. IETF
RSVP-TE) for all network elements
and let the SDN controller to figure
the way to set it up.

Example: OpenDayLight (cont)

• IETF YANG model for RSVP-TE, the
JSON structure for the lsp_config
indicates that path computation
should be handled by a PCE.

• Important Advantage of SDN
solutions is you can manage a
common YANG model (i.e. IETF
RSVP-TE) for all network elements
and let the SDN controller to figure
the way to set it up.

"bandwidth": {
"te-bandwidth": {

"ietf-te:technology": "ietf-te:optical",
"ietf-te:bandwidth": 1000000

}
},
"attributes": {

"setup-priority": 7,
"hold-priority": 7,
"record-route": true

}
}

}

LSP Configurator

• Python Lib pyGNMI or nccclient or nornir
• Invoke an external App client?

• Example: GNMIc + GoTemplates
• SDN:

• Nokia NSP
• Single NorthBound RESTCONF Interface
• Python Lib (requests)

• OpenDayLight??

I use this

IETF-TE YANG

Lab Components

SERVER 02
BARE METAL
ROCKY LINUX

SERVER 01
BARE METAL
ROCKY LINUX

K8S
NODE

NSP

172.18.1.0/24 (MGMT)10.2.16.0/24

LAPTOP

Apps
Python

Env

.YAML

RVPN

My Python Env

VIRTUALENV 1

Python 3.9.6

3rd Party Libs
Requirements.txt

lxml==4.9.3
pandas==2.1.3
matplotlib==3.8.2
Flask==3.0.0
markdown2==2.4.11

VIRTUALENV 2

Python 3.9.3

3rd Party Libs
Requirements.txt

requests==2.31.0
pyyaml==6.0.1
confluent_kafka==2.2.0

sudo python3 -m venv .venv
source .venv/bin/activate
pip3 install -r requirements.txt

Code Description: nsp-postProfile.py

common.py
import request

Class NSPClient
nspMplsIp.py
import NSPClient

class MplsIp

nsp-postProfile.py
import MplsIp

def main()

.YANG

.JSON

nsp-delProfile.py
import MplsIp

def main()

Ø IETF RSVP-TE Compatible
Ø NOKIA Specific

Code Description: nsp-lspClone.py

common.py
import request

Class NSPClient

nspNetSup.py
import NSPClient

class NetSup

nspKafkaListener.py
import confluent_kafka

class KafkaEventListener

nspMultiPccLspPaths.py
import NetSup

def _multiLspMgmt_create
def _multiLspMgmt_delete

nsp-lspClone.py
import KafkaEventListener

def main()
.YANG

.YAML .JSON

Ø IETF RSVP-TE
Ø NOKIA Specific

Why do we use a YAML file as input?

• Specific to every App
• Deploy Apps (Cluster/Replicas)
• Replica Recovery
• Scalable

App App App

DBDB DB

Operator
Custom

Closed Loop

Check State

Take Action

Extends K8s API

Kubernetes Operators

Why do we use a YAML file as input?

K8S API

User Machine

Operator

1. User/Machine
creates Object

2. K8s notifies
Operator

3. Runs
Reconcile
Loop

4. Creates
new
Objects

Operator Life-Cycle

How did we test it?
A:R1# oam lsp-ping "pccLspCloneTest-1-61" size 9000 send-count 100
LSP-PING pccLspCloneTest-1-61: 9000 bytes MPLS payload
Seq=1, send from intf to_R21, reply from 1.1.1.2

udp-data-len=32 ttl=255 rtt=5.63ms rc=3 (EgressRtr)
Seq=2, send from intf to_R21, reply from 1.1.1.2

udp-data-len=32 ttl=255 rtt=4.00ms rc=3 (EgressRtr)
Seq=3, send from intf to_R21, reply from 1.1.1.2

udp-data-len=32 ttl=255 rtt=4.49ms rc=3 (EgressRtr)
Seq=4, send from intf to_R21, reply from 1.1.1.2

udp-data-len=32 ttl=255 rtt=4.44ms rc=3 (EgressRtr)
Seq=5, send from intf to_R21, reply from 1.1.1.2

udp-data-len=32 ttl=255 rtt=4.75ms rc=3 (EgressRtr)

Demo Time: IETF-TE
Compatible

Mau Rojas
bio.site/pinrojas

Input File
lspClone-config.yml
pathJsonTemplate: 'pccLspTemplate.json'
pathNamePrefix: 'pccLspCloneTest’
profileId: 10101
pathQty: 2
groupIdFrom: 60
destinationAddressIpv4: '1.1.1.2'
sourceAddressIpv4: '1.1.1.1'
sourceRouterAddressIpv4: '1.1.1.1'
bootstrapServers: '10.2.16.11:9192'
topic: 'ns-eg-5715811f-3971-4890-b5...'
partition: 0
sslCaLocation: 'truststore.pem'

LSP Paths at Router
pccLspCloneTest-1
pccLspCloneTest-2

Input File
lspClone-config.yml
pathJsonTemplate: 'pccLspTemplate.json'
pathNamePrefix: 'pccLspCloneTest’
profileId: 10101
pathQty: 2
groupIdFrom: 60
destinationAddressIpv4: '1.1.1.2'
sourceAddressIpv4: '1.1.1.1'
sourceRouterAddressIpv4: '1.1.1.1'
bootstrapServers: '10.2.16.11:9192'
topic: 'ns-eg-5715811f-3971-4890-b5...'
partition: 0
sslCaLocation: 'truststore.pem'

LSP Paths at Router
pccLspCloneTest-1
pccLspCloneTest-2
…
pccLspCloneTest-3
…
pccLspCloneTest-N

Clones start
Here!

Input File (cont)
• upThreshold (transferred

octets) triggers an occurrence
when is over this threshold
•downThreshold (transferred

octets) triggers an occurrence
when is under this threshold
• For this demo, the period

between occurrences is 1 min
and the number of occurrences
that
• Triggers a clone is 2 (upOccurrences)
• Delete a clone is 4 (downOccurrences)

lspClone-config.yml

bootstrapServers: '10.2.16.11:9192'
topic: 'ns-eg-5715811f-3971-4890-b5...'
partition: 0
sslCaLocation: 'truststore.pem'
period: 60 #seconds
upThreshold: '90000’
upOccurrences: 2
downThreshold: '1000'
downOccurrences: 4

Input File
lspClone-config.yml
pathJsonTemplate: 'pccLspTemplate.json'
pathNamePrefix: 'pccLspCloneTest'
AssociationId: 10101
pathQty: 2
groupIdFrom: 61
destinationAddressIpv4: '1.1.1.2'
sourceAddressIpv4: '1.1.1.1'
sourceRouterAddressIpv4: '1.1.1.1'
bootstrapServers: '10.2.16.11:9192'
topic: 'ns-eg-5715811f-3971-4890-b5...'
partition: 0
sslCaLocation: 'truststore.pem'

pccLspTemplate.json

IETF-TE YANG MODEL
TUNNEL TEMPLATE

Traffic Engineering Tunnels, Label
Switched Paths and Interfaces
draft-ietf-teas-yang-te-35

PCC init LSP Template
pccLspTemplate.json

{
"tunnel": [

{
"name": "${LSP_NAME}",
"encoding": "ietf-te-types:lsp-encoding-packet",
"admin-state": "ietf-te-types:tunnel-admin-state-up",
"signaling-type": "ietf-te-types:path-setup-rsvp",
"source": "1.1.1.1",
"destination": "1.1.1.2",
"primary-paths": {

"primary-path": [
{

"name": "hopless",
"use-path-computation": true

}
]

},

IETF-TE YANG MODEL
TUNNEL TEMPLATE

Traffic Engineering Tunnels, Label
Switched Paths and Interfaces
draft-ietf-teas-yang-te-35

signaling-type: YANG leaf that
holds the LSP setup type, such as
RSVP-TE or SR

PCC init LSP Template (cont)
pccLspTemplate.json

coming from previous slide

"association-objects": {
"association-object-extended": [
{

"association-key" : "nokia-path-profile-1",
"id": "1",
"extended-id" : "4F”

}
]
additional lines have been discarded

list association-object-extended {
key "association-key";
unique

"type id source/id source/type global-source
extended-id";

description
"List of extended association objects.";

reference
"RFC6780";

leaf id {
type uint16;
description

"Association identifier.";
reference

"RFC4872, RFC6780";

leaf extended-id {
type yang:hex-string;
description

"Association extended identifier.";
reference

"RFC6780";

PCC init LSP Template
pccLspTemplate.json

"tunnel": [
{

"name": "pccLspCloneTest-2-62",
... # this is an extract

"association-objects": {
"association-object-extended": [

{
"association-key" : "nokia-path-profile-1",
"id": "10102",
"extended-id" : ”3E"

}
]

LSP Disjoint Group
"name": "pccLspCloneTest-1-62",
... # this is an extract
"association-objects": {

"association-object-extended": [
{

"association-key" : "nokia-path-profile-1",
"id": "10102",
"extended-id" : "3E"

"name": "pccLspCloneTest-2-62",
... # this is an extract
"association-objects": {

"association-object-extended": [
{

"association-key" : "nokia-path-profile-1",
"id": "10102",
"extended-id" : "3E"

Demo: Create PCE Policies
./nsp-postProfile.py --datafile profileTemplate.json --name nanog90 --profileId 12

Demo: Start Script
(.venv) pinrojas@MacB nanog90-rsvpte-demo-lab % ./nsp-lspClone.py --configfile lspClone-config.yml

Demo: Going Over upThreshold

2024-01-22 11:12:58.641484 - INFO: aggregate-octets-periodic at pccLspCloneTest-1-61: 90220 (Over [Up]Threshold)

2024-01-22 11:13:08.640608 - INFO: aggregate-octets-periodic at pccLspCloneTest-1-61: 81198 (In Between
Thresholds)

2024-01-22 11:13:18.635615 - INFO: aggregate-octets-periodic at pccLspCloneTest-1-61: 90220 (Over [Up]Threshold)
2024-01-22 11:13:28.635188 - INFO: aggregate-octets-periodic at pccLspCloneTest-1-61: 90220 (Over [Up]Threshold)
2024-01-22 11:13:38.637220 - INFO: aggregate-octets-periodic at pccLspCloneTest-1-61: 90220 (Over [Up]Threshold)
2024-01-22 11:13:48.631361 - INFO: aggregate-octets-periodic at pccLspCloneTest-1-61: 90220 (Over [Up]Threshold)
2024-01-22 11:13:58.847046 - INFO: aggregate-octets-periodic at pccLspCloneTest-1-61: 90220 (Over [Up]Threshold)
2024-01-22 11:13:58.847046 - INFO: Time Period has ended, resetting
2024-01-22 11:13:58.847046 - INFO: [Up]Threshold [Ex]ceeded more than 2 times in the last 60 seconds! Triggering
event...
2024-01-22 11:13:58.847113 - INFO: Event triggered. LSP Clone started!
2024-01-22 11:14:00.127018 - INFO: LSP Path pccLspCloneTest-5-63 has been created succesfully

Demo: Going Over upThreshold

period: 60 #seconds
upThreshold: '90000’
upOccurrences: 2
downThreshold: '1000'
downOccurrences: 4

lspClone-config.yml

Demo: Going Under downThreshold

2024-01-22 11:14:08.606009 - INFO: aggregate-octets-periodic at pccLspCloneTest-1-61: 90220 (Over [Up]Threshold)

2024-01-22 11:14:18.602644 - INFO: aggregate-octets-periodic at pccLspCloneTest-1-61: 9022 (In Between Thresholds)
2024-01-22 11:14:28.603519 - INFO: aggregate-octets-periodic at pccLspCloneTest-1-61: 0 (Under [Down]Threshold)
2024-01-22 11:14:38.604955 - INFO: aggregate-octets-periodic at pccLspCloneTest-1-61: 0 (Under [Down]Threshold)
2024-01-22 11:14:48.619083 - INFO: aggregate-octets-periodic at pccLspCloneTest-1-61: 0 (Under [Down]Threshold)
2024-01-22 11:14:58.601184 - INFO: aggregate-octets-periodic at pccLspCloneTest-1-61: 0 (Under [Down]Threshold)
2024-01-22 11:15:08.689462 - INFO: aggregate-octets-periodic at pccLspCloneTest-1-61: 0 (Under [Down]Threshold)
2024-01-22 11:15:08.689462 - INFO: Time Period has ended, resetting
2024-01-22 11:15:08.689462 - INFO: [Down]Threshold [Sub]ceeded more than 4 times in the last 60 seconds!
Triggering event...
2024-01-22 11:15:08.689642 - INFO: Event triggered. LSP Clone Deletion started!
2024-01-22 11:15:10.514749 - INFO: LSP Path pccLspCloneTest-5-63 has been deleted succesfully

Demo: Going Under downThreshold

period: 60 #seconds
upThreshold: '90000’
upOccurrences: 2
downThreshold: '1000'
downOccurrences: 4

lspClone-config.yml

Almost done!

Final Words

In this tutorial we have seen:
• Traffic-Engineering Automation Overview [Diego]

• Advantages Over Non-IETF RSVP Extended Protocols

• Telemetry in TE Automation [David/Mau]
• Integrating PCE with Telemetry (gRPC) for a Closed Loop System

• Hands-On Lab: Automation Driven Traffic Steering [Mau]
• Core Lab Components
• Tool Comparisons (e.g., Nornir vs SDN)
• Building Python Application Components
• Utilizing IETF-TE YANG RESTCONF for Tunnel Management

Additional resources

• Containerlab – NANOG talk - Running networking labs with Docker UX –
Roman and Karim
• https://youtu.be/qigCla1qY3k

• gNMIc – NANOG Talk - An intuitive gNMI CLI and a feature-rich telemetry
collector - Karim
• https://youtu.be/v3CL2vrGD_8

• Packet Pushers: PCE and PCEP Overview
• https://packetpushers.net/blog/pce-pcep-overview/

• Check repo at: https://github.com/cloud-native-everything/nanog90-rsvpte-
demo-lab (work in progress)

https://youtu.be/qigCla1qY3k
https://youtu.be/v3CL2vrGD_8
https://packetpushers.net/blog/pce-pcep-overview/
https://github.com/cloud-native-everything/nanog90-rsvpte-demo-lab
https://github.com/cloud-native-everything/nanog90-rsvpte-demo-lab

Thanks!
DONE WITH MY PRESENTATION

