
Network Automation Showdown: 
Go vs. Python
NANOG 90 – February 13th, 2024

Moderator: Cat Gurinsky
Panelists:

Brandon Bennett, Roblox
Ryan Hamel, i3D.net

Daniel Hertzberg, Arista Networks
Frank Seesink, UNC Chapel Hill

Claus Töpke, Telcomanager Technologies



Go vs. Python
The goals of this panel



What we’ll cover

For each language we’ll discuss:
• Pros & Cons 
• What the language excels at
• What the language struggles with
• What modules / libraries exist for network purposes
• Who should consider using it and why



Go vs Python quick comparison
Python: 
• Ecosystem: lots of 

special libraries
• Learning Curve: more 

intuitive for beginners
• Dynamically Typing: 

streamlines the coding 
process

Go: 
• Compiled Nature: 

Simplifies deployments
• Concurrency: great 

performance at scale
• Statically Typed: more 

predictable with upfront 
declarations

• Error Handling: 
proactive approach for 
better resilience 

Taken from: https://www.packetcoders.io/python-vs-go-for-network-automation/ 

https://www.packetcoders.io/python-vs-go-for-network-automation/


Static vs. Typed
Interpreted vs. Compiled
• Dynamic typing: Used by Python, type checking 

happens at runtime. Types don’t have to be specified.
• Static typing: Used by Go, type checking happens 

when compiling. Types should be specified. 
• Interpreted Language: Python, the source code of a 

program is converted into bytecode that is then 
executed by the interpreter.

• Compiled Language: Go, converted directly into 
machine code that the processor can execute, stand 
alone and the resulting binary doesn’t require installing 
dependencies. 



Concurrency & Parallelism

• CPython GIL (Global Interpreter Lock)
• Limited to a single core (work being done in PEP703)
• Threads
• Multiprocessing
• concurrent.futures
• asyncio

• Coroutines
• Goroutines are not the same as coroutines

• Green thread based scheduler
• Can be spread across cores

https://docs.oracle.com/cd/E36784_01/html/E36868/mtintro-6.html

https://peps.python.org/pep-0703/
https://docs.python.org/3/library/threading.html#module-threading
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/concurrent.futures.html#
https://docs.python.org/3/library/asyncio.html#module-asyncio
https://docs.oracle.com/cd/E36784_01/html/E36868/mtintro-6.html


Performance
• At what scale does performance matter?



Easy vs Simple

• Python is easy. Go is simple. 
Simple is not easy.

• Python → Go cheat sheets 

https://preslav.me/2023/11/27/python-is-easy-golang-is-simple-simple-is-not-easy/

https://preslav.me/2023/11/27/python-is-easy-golang-is-simple-simple-is-not-easy/


Deployments & Dependencies
• Python

• Plenty of tool chain based helpers
• Jupyter notebooks
• REPL: Read-Eval-Print-Loop
• Requirements
• Virtual Environments

• Go 
• No external dependencies
• After compilation it’s a single binary
• Can cross compile for other OS
• Built in unit testing
• Formatting 
• Typing



Network libraries Go vs Python
• Python

• Paramiko (SSH) / Netmiko (SSH network devices)
• Nornir (automation framework)
• NAPALM (Network Automation and Programmability 

Abstraction Layer with Multivendor support)
• pyGNMI
• netaddr

• Go 
• Openconfig Go Modules(yGOT,yGNMI,gRIBI,gNMI,goYANG)
• goBGP
• Netaddr
• Prometheus

https://www.paramiko.org/
https://github.com/ktbyers/netmiko
https://nornir.readthedocs.io
https://github.com/napalm-automation/napalm
https://github.com/akarneliuk/pygnmi


Dev Time vs. Execution Time

Development Time Execution Time

Assembler

C

Go

Python



Thank you
13-FEB-2024



Resources

• Python -> Go Cheat Sheet Examples:
• https://www.353.solutions/py2go/index.html

• Getting started with Go tutorial
• https://go.dev/doc/tutorial/getting-started

• Getting started with Python
• https://www.python.org/about/gettingstarted/

http://www.353.solutions/py2go/index.html
https://go.dev/doc/tutorial/getting-started
https://www.python.org/about/gettingstarted/

