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Go vs. Python
The goals of this panel



What we’ll cover

For each language we’ll discuss:
• Pros & Cons 
• What the language excels at
• What the language struggles with
• What modules / libraries exist for network purposes
• Who should consider using it and why



Go vs Python quick comparison
Python: 
• Ecosystem: lots of 

special libraries
• Learning Curve: more 

intuitive for beginners
• Dynamically Typing: 

streamlines the coding 
process

Go: 
• Compiled Nature: 

Simplifies deployments
• Concurrency: great 

performance at scale
• Statically Typed: more 

predictable with upfront 
declarations

• Error Handling: 
proactive approach for 
better resilience 

Taken from: https://www.packetcoders.io/python-vs-go-for-network-automation/ 

https://www.packetcoders.io/python-vs-go-for-network-automation/


Static vs. Typed
Interpreted vs. Compiled
• Dynamic typing: Used by Python, type checking 

happens at runtime. Types don’t have to be specified.
• Static typing: Used by Go, type checking happens 

when compiling. Types should be specified. 
• Interpreted Language: Python, the source code of a 

program is converted into bytecode that is then 
executed by the interpreter.

• Compiled Language: Go, converted directly into 
machine code that the processor can execute, stand 
alone and the resulting binary doesn’t require installing 
dependencies. 



Concurrency & Parallelism

• CPython GIL (Global Interpreter Lock)
• Limited to a single core (work being done in PEP703)
• Threads
• Multiprocessing
• concurrent.futures
• asyncio

• Coroutines
• Goroutines are not the same as coroutines

• Green thread based scheduler
• Can be spread across cores

https://docs.oracle.com/cd/E36784_01/html/E36868/mtintro-6.html

https://peps.python.org/pep-0703/
https://docs.python.org/3/library/threading.html#module-threading
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/concurrent.futures.html#
https://docs.python.org/3/library/asyncio.html#module-asyncio
https://docs.oracle.com/cd/E36784_01/html/E36868/mtintro-6.html


Performance
• At what scale does performance matter?



Easy vs Simple

• Python is easy. Go is simple. 
Simple is not easy.

• Python → Go cheat sheets 

https://preslav.me/2023/11/27/python-is-easy-golang-is-simple-simple-is-not-easy/

https://preslav.me/2023/11/27/python-is-easy-golang-is-simple-simple-is-not-easy/


Deployments & Dependencies
• Python

• Plenty of tool chain based helpers
• Jupyter notebooks
• REPL: Read-Eval-Print-Loop
• Requirements
• Virtual Environments

• Go 
• No external dependencies
• After compilation it’s a single binary
• Can cross compile for other OS
• Built in unit testing
• Formatting 
• Typing



Network libraries Go vs Python
• Python

• Paramiko (SSH) / Netmiko (SSH network devices)
• Nornir (automation framework)
• NAPALM (Network Automation and Programmability 

Abstraction Layer with Multivendor support)
• pyGNMI
• netaddr

• Go 
• Openconfig Go Modules(yGOT,yGNMI,gRIBI,gNMI,goYANG)
• goBGP
• Netaddr
• Prometheus

https://www.paramiko.org/
https://github.com/ktbyers/netmiko
https://nornir.readthedocs.io
https://github.com/napalm-automation/napalm
https://github.com/akarneliuk/pygnmi


Dev Time vs. Execution Time
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Resources

• Python -> Go Cheat Sheet Examples:
• https://www.353.solutions/py2go/index.html

• Getting started with Go tutorial
• https://go.dev/doc/tutorial/getting-started

• Getting started with Python
• https://www.python.org/about/gettingstarted/

http://www.353.solutions/py2go/index.html
https://go.dev/doc/tutorial/getting-started
https://www.python.org/about/gettingstarted/

