PTP @ Meta

Oleg Obleukhov Production Engineer

🔿 Meta

Deploying PTP at scale

Developing SPTP

Other usages

Agenda

- Read consistency
- Hybrid logical clock (HLC) on scale
- Latency measurement/congestion control
- Event tracing and correlation
- ...

02 Deploying PTP at scale

PTP Client

PTP Rack

PTP rack in one of the Meta regions

GNSS antenna in one of the Meta regions

Each rack:

- 4 x Time Appliances
- 1 x Calnex monitoring device
- 1 x Optical antenna
- 1 x TC switch

4 racks per region:

- Independent optical antenna with length compensation
- Independent 2 source power
- Independent monitoring
- Deterministic network distance to the clients (6 hops)

Facebook Time Card

- 16 appliances per region
- 1 Time Appliance can serve 1.5M QPS
- 1 Time Appliance 100k QPS normal operation

Ublox GNSS receiver supports:

- GPS, Galileo, GLONASS, BeiDou
- 3 independent bandwidths L1, L2, L5
- Jamming/Spoofing protection
- Operation precision ±12ns

Rubidium Atomic clock ensures <1us / 24 hour drift

- In practice 1us per 4 days
- Can run without GNSS for 7 days without breaking an SLA

In every rack (4 per region) we have Calnex monitoring solution which is:

- Testing local Time Appliances with Pulse Per Second (PPS)
- Acting as a PTP and NTP client connected via Network
- Cross checking 3 other racks:
 - \circ $\,$ Location bias $\,$
 - Different network paths
- Exporting data to ODS and Scuba

Calnex Sentinel monitoring data

PTP network

02 Deploying PTP at scale

ptp41[43.662]:	offset	-9	s2	freq	-12372	path	delay	4114
ptp41[44.662]:	offset	17	s2	freq	-12349	path	delay	4114
ptp41[45.662]:	offset	37	s2	freq	-12324	path	delay	4078
ptp41[46.662]:	offset	-70	s2	freq	-12420	path	delay	4153
ptp41[47.662]:	offset	95	s2	freq	-12276	path	delay	4039
ptp41[48.662]:	offset	266776	s2	freq	+254434	path	delay	4181
ptp41[49.662]:	offset	-430864	s2	freq	-363173	path	delay	168255
ptp41[50.662]:	offset	-80141	s2	freq	-141710	path	delay	168255
ptp41[51.662]:	offset	217086	s2	freq	+131475	path	delay	408
ptp41[52.662]:	offset	16268	s2	freq	-4217	path	delay	57459
ptp41[53.662]:	offset	8101	s2	freq	-7504	path	delay	57459
ptp41[54.662]:	offset	55912	s2	freq	+42738	path	delay	4776
ptp41[56.305]:	offset	-48984	s2	freq	-45385	path	delay	19209
ptp41[56.662]:	offset	-37194	s2	freq	-48290	path	delay	19209
ptp41[57.662]:	offset	29964	s2	freq	+7710	path	delay	-12022
ptp41[58.662]:	offset	9943	s2	freq	-3322	path	delay	-12022
ptp41[59.662]:	offset	-19403	s2	freq	-29685	path	delay	8279
ptp41[60.662]:	offset	8560	s2	freq	-7543	path	delay	-2377
ptp41[61.662]:	offset	-4906	s2	freq	-18441	path	delay	6256
ptp41[62.662]:	offset	4197	s2	freq	-10810	path	delay	3249
ptp41[63.662]:	offset	979	s2	freq	-12769	path	delay	4917
ptp41[64.662]:	offset	1386	s2	freq	-12068	path	delay	4917
ptp41[65.662]:	offset	1741	s2	freq	-11297	path	delay	4270
ptp41[66.662]:	offset	509	s2	freq	-12007	path	delay	4428
ptp41[67.662]:	offset	395	s2	freq	-11968	path	delay	4185
ptp41[68.662]:	offset	-7	s2	freq	-12252	path	delay	4185

Absolute offset values on hosts connected to the switch without

PTP clients

The PTP client

Hardware timestamps

All

\$ ethtool -T eth0 Time stamping parameters for eth0: Capabilities: hardware-transmit hardware-receive hardware-raw-clock PTP Hardware Clock: 0 Hardware Transmit Timestamp Modes: off on Hardware Receive Filter Modes: none

128 bits	64 bits	64 bits	64 bits
Socket control message header	Software	Legacy	Hardware
	Timestamp	Timestamp	Timestamp

			22 004401	, -			
ptp41[45.432]	: spike detecte	d => max offs	et locked: 33	, setting offse	t to min offset	freq mean:	-13065.039314
ptp41[44.432]	: offset	1 s2 freq	-13093 path (delay 3493			
ptp41[43.432]	: offset	-5 s2 freq	-13098 path (delay 3493			
ptp41[42.432]	: offset	9 s2 freq	-13087 path (delay 3493			
ptp41[41.432]	: offset	-6 s2 freq	-13100 path (delay 3493			
ptp41[40.432]	: offset	-16 s2 freq	-13105 path (delay 3493			

	- ·	2		•	•			
ptp41[47.432]	: offset	-21	s2 :	freq	-13115	path	delay	3493
ptp41[48.432]	: offset	9	s2 :	freq	-13091	path	delay	3493
ptp41[49.432]	: offset	10	s2 :	freq	-13088	path	delay	3493
ptp41[50.432]	: offset	-8	s2 :	freq	-13103	path	delay	3493

Schematic representation of sharding

fbclock

fbclock

Estimated E2E Variance = [GNSS Variance + MAC Variance + ts2phc Variance] + [PTP4L Offset Variance] = [Time Server Variance] + [Ordinary Clock Variance]

Estimated E2E Variance = (12ns ^ 2) + (43ns ^ 2) + (52ns ^2) + (61ns ^2) = 8418 which corresponds to 91.7 ns

$$Var\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} Var(X_i)$$

Two-step PTP exchange

- Excessive network communication
- Multicast support requirement for large numbers of clients
- Unicast support has strict capacity limit
- State maintenance on both server and client side
- Individual clients have no control over the communication parameters
- Server driven decision

Simple PTP

- Client sends a Delay Request
- Server responds with a Sync
- Server sends Followup/Announce

mean_path_delay = ((T4 - T3) + (T2-T1) - CF1 -CF2)/2

clock_offset = T2 - T1 - mean_path_delay

Simple PTP

- 1. Client sends *DELAY_REQ* effectively initiating an exchange with the Server. The Client records timestamp T3
- 2. Server records CF_2 from DELAY_REQ
- 3. Server records the RX timestamp T4
- 4. Server sends SYNC. The server adds timestamp T4 in the originTimestamp field and records the TX timestamp T1
- 5. Server sends ANNOUNCE with a TX timestamp T1 of the SYNC in originTimestamp field and CF_2 from DELAY_REQ in a correctionField.
- 6. Client records T2 of the received SYNC packet, and also CF_1
- 7. Client records data from ANNOUNCE packet, and also CF_2.

Delay Request

Sync

Precision Time Protocol (IEEE1588)	тз		
0000 = messageId: Sync Message (0x0)			Delay Request
0010 = versionPTP: 2			
<pre>messageLength: 44</pre>			Sync
correction: 5468.812592 nanoseconds	T2	•	Announce/Followup
correction: Ns: 5468 nanoseconds		•	
<pre>correctionSubNs: 0.812591552734375 nanoseconds</pre>			
originTimestamp (seconds): 1695066968		I	
<pre>originTimestamp (nanoseconds): 900335434</pre>			

Client

I

Server

Time

Т4 Т1

Announce

Pre	ecision Time Protocol (IEEE1588) 1011 = messageId: Announce Message (0xb)		тз	-
	\dots 0010 = versionPTP: 2			
	messageLength: 64			
	correction: 5586.562592 nanoseconds			
	correction: Ns: 5586 nanoseconds		T2	
	correctionSubNs: 0.562591552734375 nanoseconds			
	originTimestamp (seconds): 1695066968			1
	originTimestamp (nanoseconds): 900409436			
	originCurrentUTCOffset: 37			
	priority1: 128			
	grandmasterClockClass: 6			
	grandmasterClockAccuracy: The time is accurate to within 100 ns	s (0x21)		
	grandmasterClockVariance: 23008			
	TimeSource: GPS (0x20)			

Туре	Number	Validation
PTP Servers	16	Calnex Sentinel
Transparent Clocks	5000	Calnex Sentinel Calnex Neo
PTP Client	> 100000	SPTP logs Calnex Sentinel Spirent N4U

Low resource consumption

- Significant reduction in memory (70%) and CPU (40%) consumption
- Up to 50% reduction in network utilization
- 1.5 million clients per second per server

0 22.06 22.06 22.10 22.12 22.14 22.15 22.18 22.20 22.22 22.24 22.26 22.28 22.30 22.32 22.34 22.36 22.36 22.38 22.40 22.42 22.44 22.46 22.48 server:rss bytes (#2 300 mins ago)

5 B 4.5 B 4 B

3.5 B

2.5 B 2 B

18

Strong reliability and fault tolerance

- Every exchange is concurrent but independent
- Forward and reverse exchange happen as close as possible
- Path delay is calculated every exchange
- BMCA works

Client driven exchange

- Client controls frequency and duration.
- Synchronous communication
- No "remaining" sync messages

No state

- Simple implementation
- Restart any time

Simple implementation

- No state, transitions etc
- Basic implementation <1000 LOC

Low resource consumption

- Up to 70% reduction in memory and CPU consumption
- Up to 50% network utilization improvement

No negotiation between client and a server

- No handshake
- Fast start time (1.5 rtt)

Using existing underlying hardware support

- Hardware timestamping on NIC works
- Transparent clock works

Less flow control

- Impossible to set different intervals for different types of messages
- Sync and Follow Up/Announce are always bound together

No multicast support

- SPTP is based on unicast and makes no sense with multicast
- Can't offload work to switches

No negotiation between client and a server

- Less flexibility in negotiation (TLVs are still possible)
- Authentication extensions may reduce performance gains

- Written in modern popular language (Go)
- Client/Server is open sourced
- Good test coverage
- https://github.com/facebook/time/tree/main/ptp

☐ facebook / time (Public)						
<> Code ③ Issues 2 \$ Pull requ	uests 🕑 Actions 🖽 Projects 😲 Securi					
I Code	time / ptp / sptp / 🖓					
₽ main → Q	leoleovich forward and backwards 🚥					
Q Go to file	Name					
> 🖿 ntp						
> 📄 oscillatord	• ••					
> 📄 phc	bmc					
✓ ➡ ptp	Client					
> 📄 c4u						
> 📄 linearizability	stats					
> 📄 protocol	C README.md					
> 🖿 ptp4u	🗋 sptp.png					
> 📄 simpleclient						
🗸 盲 sptp	README.md					

https://sptp.info

04 Other usages

04 Other usages

[root@host1 ~]# ping host2 PING host2(host2 (2401:db00::1)) 56 data bytes 64 bytes from host2 (2401:db00::1): icmp_seq=1 ttl=118 time=0.084 ms 64 bytes from host2 (2401:db00::1): icmp_seq=2 ttl=118 time=0.092 ms 64 bytes from host2 (2401:db00::1): icmp_seq=3 ttl=118 time=0.137 ms 64 bytes from host2 (2401:db00::1): icmp_seq=4 ttl=118 time=0.100 ms 64 bytes from host2 (2401:db00::1): icmp_seq=5 ttl=118 time=0.174 ms

TCP/IP model	Protocols and services	OSI model		TCP/IP model	Protocols and services	OSI model
	HTTP, FTTP,	Application			HTTP, FTTP,	Application
Application	Telnet, NTP,	Presentation		Application	Telnet, NTP,	Presentation
		Session				Session
fransport		Transport		Transport		Transport
Network	IP, ARP, ICMP, IGMP	Network		Network	IP, ARP, ICMP, IGMP	Network
Network	Children L	Data Link		Network	City and	Data Link
Interface	Emerner	Physical		Interface	Emerner	Physical
			-C Network			

[root@]	nostl ~	~]# ptping hos	st2		
host2:	seq=1	time=38.07µs	(->23.767µs	+	<-14.303µs)
host2:	seq=2	time=38.185µs	s(->23.688µs	+	<-14.497µs)
host2:	seq=3	time=38.033µs	s(->23.703µs	+	<-14.33µs)
host2:	seq=4	time=38.037µs	s(->23.698µs	+	<-14.339µs)
host2:	seq=5	time=38.023µs	s(->23.655µs	+	<-14.368µs)

