
PTP @ Meta

Oleg Obleukhov
Production Engineer

Agenda

Why PTP?

Deploying PTP at scale

Developing SPTP

Other usages

01 Why PTP?

01 Why PTP?

01 Why PTP?

01 Why PTP?

01 Why PTP?

Why PTP

● Read consistency
● Hybrid logical clock (HLC) on scale
● Latency measurement/congestion control
● Event tracing and correlation
● …

02 Deploying PTP at scale

sptp

sptp

PTP Rack

Network

PTP Client

PTP rack

GNSS antenna in one of the Meta regions

PTP rack in one of the Meta regions

Each rack:

● 4 x Time Appliances
● 1 x Calnex monitoring device
● 1 x Optical antenna
● 1 x TC switch

4 racks per region:

● Independent optical antenna with length compensation
● Independent 2 source power
● Independent monitoring
● Deterministic network distance to the clients (6 hops)

PTP rack

Ublox GNSS receiver supports:

● GPS, Galileo, GLONASS, BeiDou
● 3 independent bandwidths - L1, L2, L5
● Jamming/Spoofing protection
● Operation precision ±12ns

Rubidium Atomic clock ensures <1us / 24 hour drift

● In practice 1us per 4 days
● Can run without GNSS for 7 days without breaking an SLA

● 16 appliances per region
● 1 Time Appliance can serve 1.5M QPS
● 1 Time Appliance 100k QPS normal operation

PTP rack

In every rack (4 per region) we have Calnex monitoring solution
which is:

● Testing local Time Appliances with Pulse Per Second (PPS)
● Acting as a PTP and NTP client connected via Network
● Cross checking 3 other racks:

○ Location bias
○ Different network paths

● Exporting data to ODS and Scuba

PTP rack

PTP network

02 Deploying PTP at scale

PTP Transparent Clock

HW Timestamping NIC

02 Deploying PTP at scale

ptp4l[43.662]: offset -9 s2 freq -12372 path delay 4114
ptp4l[44.662]: offset 17 s2 freq -12349 path delay 4114

ptp4l[45.662]: offset 37 s2 freq -12324 path delay 4078
ptp4l[46.662]: offset -70 s2 freq -12420 path delay 4153
ptp4l[47.662]: offset 95 s2 freq -12276 path delay 4039
ptp4l[48.662]: offset 266776 s2 freq +254434 path delay 4181

ptp4l[49.662]: offset -430864 s2 freq -363173 path delay 168255
ptp4l[50.662]: offset -80141 s2 freq -141710 path delay 168255
ptp4l[51.662]: offset 217086 s2 freq +131475 path delay 408
ptp4l[52.662]: offset 16268 s2 freq -4217 path delay 57459
ptp4l[53.662]: offset 8101 s2 freq -7504 path delay 57459

ptp4l[54.662]: offset 55912 s2 freq +42738 path delay 4776
ptp4l[56.305]: offset -48984 s2 freq -45385 path delay 19209
ptp4l[56.662]: offset -37194 s2 freq -48290 path delay 19209
ptp4l[57.662]: offset 29964 s2 freq +7710 path delay -12022
ptp4l[58.662]: offset 9943 s2 freq -3322 path delay -12022

ptp4l[59.662]: offset -19403 s2 freq -29685 path delay 8279
ptp4l[60.662]: offset 8560 s2 freq -7543 path delay -2377
ptp4l[61.662]: offset -4906 s2 freq -18441 path delay 6256
ptp4l[62.662]: offset 4197 s2 freq -10810 path delay 3249

ptp4l[63.662]: offset 979 s2 freq -12769 path delay 4917
ptp4l[64.662]: offset 1386 s2 freq -12068 path delay 4917
ptp4l[65.662]: offset 1741 s2 freq -11297 path delay 4270
ptp4l[66.662]: offset 509 s2 freq -12007 path delay 4428
ptp4l[67.662]: offset 395 s2 freq -11968 path delay 4185

ptp4l[68.662]: offset -7 s2 freq -12252 path delay 4185

PTP clients

The PTP client

Hardware timestamps

128 bits 64 bits 64 bits 64 bits

Socket control
message header

Software
Timestamp

Legacy
Timestamp

Hardware
Timestamp

$ ethtool -T eth0
Time stamping parameters for eth0:
Capabilities:

hardware-transmit
hardware-receive
hardware-raw-clock

PTP Hardware Clock: 0
Hardware Transmit Timestamp Modes:

off
on

Hardware Receive Filter Modes:
none

All

ptp4l[40.432]: offset -16 s2 freq -13105 path delay 3493
ptp4l[41.432]: offset -6 s2 freq -13100 path delay 3493
ptp4l[42.432]: offset 9 s2 freq -13087 path delay 3493
ptp4l[43.432]: offset -5 s2 freq -13098 path delay 3493
ptp4l[44.432]: offset 1 s2 freq -13093 path delay 3493
ptp4l[45.432]: spike detected => max_offset_locked: 33, setting offset to min_offset_freq_mean: -13065.039314
ptp4l[46.432]: skip 1/15 large offset (>33) 224401
ptp4l[47.432]: offset -21 s2 freq -13115 path delay 3493
ptp4l[48.432]: offset 9 s2 freq -13091 path delay 3493
ptp4l[49.432]: offset 10 s2 freq -13088 path delay 3493
ptp4l[50.432]: offset -8 s2 freq -13103 path delay 3493

ptp4l

Schematic representation of sharding

fbclock

fbclock

Estimated E2E Variance = [GNSS Variance + MAC Variance + ts2phc Variance] + [PTP4L Offset Variance] = [Time Server Variance] + [Ordinary Clock Variance]

Estimated E2E Variance = (12ns ^ 2) + (43ns ^ 2) + (52ns ^2) + (61ns ^2) = 8418 which corresponds to 91.7 ns

03 Developing SPTP

03 Developing SPTP

Two-step PTP exchange
● Excessive network communication

● Multicast support requirement for large numbers of clients

● Unicast support has strict capacity limit

● State maintenance on both server and client side

● Individual clients have no control over the communication parameters

● Server driven decision

03 Developing SPTP

Simple PTP
● Client sends a Delay Request

● Server responds with a Sync

● Server sends Followup/Announce

mean_path_delay = ((T4 - T3) + (T2-T1) - CF1 -
CF2)/2

clock_offset = T2 - T1 - mean_path_delay

03 Developing SPTP

Simple PTP
1. Client sends DELAY_REQ effectively initiating an exchange with the Server. The Client

records timestamp T3
2. Server records CF_2 from DELAY_REQ
3. Server records the RX timestamp T4
4. Server sends SYNC. The server adds timestamp T4 in the originTimestamp field

and records the TX timestamp T1
5. Server sends ANNOUNCE with a TX timestamp T1 of the SYNC in originTimestamp

field and CF_2 from DELAY_REQ in a correctionField.
6. Client records T2 of the received SYNC packet, and also CF_1
7. Client records data from ANNOUNCE packet, and also CF_2.

03 Developing SPTP

Delay Request

03 Developing SPTP

Sync

03 Developing SPTP

Announce

03 Developing SPTP

Type Number Validation

PTP Servers 16 Calnex Sentinel

Transparent Clocks 5000 Calnex Sentinel
Calnex Neo

PTP Client > 100000 SPTP logs
Calnex Sentinel
Spirent N4U

03 Developing SPTP

Low resource
consumption
● Significant reduction in memory (70%) and CPU (40%) consumption
● Up to 50% reduction in network utilization
● 1.5 million clients per second per server

03 Developing SPTP

Strong reliability and
fault tolerance

● Every exchange is concurrent but independent
● Forward and reverse exchange happen as close as

possible
● Path delay is calculated every exchange
● BMCA works

03 Developing SPTP

Client driven exchange

● Client controls frequency and duration.
● Synchronous communication
● No “remaining” sync messages

No negotiation between client and a server

● No handshake
● Fast start time (1.5 rtt)

No state

● Simple implementation
● Restart any time

Low resource consumption

● Up to 70% reduction in memory and CPU consumption
● Up to 50% network utilization improvement

Simple implementation

● No state, transitions etc
● Basic implementation <1000 LOC

Using existing underlying hardware support

● Hardware timestamping on NIC works
● Transparent clock works

03 Developing SPTP

Less flow control

● Impossible to set different intervals for different
types of messages

● Sync and Follow Up/Announce are always bound
together

No negotiation between client and a server

● Less flexibility in negotiation (TLVs are still possible)
● Authentication extensions may reduce performance gains

No multicast support

● SPTP is based on unicast and makes no sense
with multicast

● Can’t offload work to switches

03 Developing SPTP

● Written in modern popular language (Go)

● Client/Server is open sourced

● Good test coverage

● https://github.com/facebook/time/tree/main/ptp

https://sptp.info

https://github.com/facebook/time/tree/main/ptp

04 Other usages

04 Other usages

[root@host1 ~]# ping host2
PING host2(host2 (2401:db00::1)) 56 data bytes
64 bytes from host2 (2401:db00::1): icmp_seq=1 ttl=118 time=0.084 ms
64 bytes from host2 (2401:db00::1): icmp_seq=2 ttl=118 time=0.092 ms
64 bytes from host2 (2401:db00::1): icmp_seq=3 ttl=118 time=0.137 ms
64 bytes from host2 (2401:db00::1): icmp_seq=4 ttl=118 time=0.100 ms
64 bytes from host2 (2401:db00::1): icmp_seq=5 ttl=118 time=0.174 ms

[root@host1 ~]# ptping host2
host2: seq=1 time=38.07µs (->23.767µs + <-14.303µs)
host2: seq=2 time=38.185µs(->23.688µs + <-14.497µs)
host2: seq=3 time=38.033µs(->23.703µs + <-14.33µs)
host2: seq=4 time=38.037µs(->23.698µs + <-14.339µs)
host2: seq=5 time=38.023µs(->23.655µs + <-14.368µs)

Announce
(quality)

