A Power Steering Portal

Ron Bonica, Tony Li Juniper Networks NANOG 91

The Status Quo

- Network operators engineer networks with sufficient capacity to support peak loads
 - Redundant capacity to be used in case of failure
- Power consumption is constant
- Most networks exhibit predictable utilization patterns

Money Flying Out The Window

\$ mm 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

USA traffic day-by-day Bandwidth Comparison - 2020-03-13

Three Case Studies: Potential Savings

- Tier 1 European ISP
 - 106 nodes, 1144 links
 - Savings of 195KW out of an initial 265KW
 - 73.5% of PFE & link power
- Another European Tier 1 ISP
 - 192 nodes, 2691 links
 - Savings of 379KW out of an initial 491KW
 - 77.2% of PFE & link power
- An access network in a US Tier 1 ISP
 - 85 nodes, 1500 links
 - Savings of 58KW out of 207KW
 - 28.0% of PFE & link power

Goal: Power Savings

The Solution

- Consolidate traffic to facilitate power savings
- Power down unused network components when they are not needed
- Component granularity maximizes savings

Component Granularity

- Depends on your router architecture
- A component can be:
 - The entire router
 - A chassis or a Field Replaceable Unit (FRU)
 - Power supply, fan tray, switching interface board, line card, pluggable line card optics
 - An ASIC on an FRU

Which Components Consume Power

• Big Consumers

- Line card ASICs (@250W)
- Switching interface board ASICs (@150W)
- Lesser Consumers
 - Route processors (@100W)
 - Line card optics (@20)

Your results can vary depending on router architecture

HVAC and fans also consume significant amounts of power

New Feature: Component Power Status

- Network elements contain components
- Each component has a power status
 - Up, Down
- The power status of each component can be changed independently
 - An operator can power down one line card without powering down another
 - An operator can power down a port without powering down another
- Containment matters
 - If an operator powers down a line card, they also power down every port that the line card contains

Operational Impact

- A typical network has thousands of network components
- Managing their power status can be labor intensive and error prone
- Some network events will require immediate power status actions
 - A backhoe cuts a link, driving the network into congestion. The best way to eliminate congestion is to power up a line card that is currently powered down

Introducing the Power Steering Portal

- Provides network visualization (maps)
 - Operational and utilization views
 - Power consumption and power efficiency views
- Displays weekly trends
 - Utilization, power consumption and power efficiency
- Proposes power savings policy
 - Which components can be powered up and down
 - When can they be powered up and down
- Deploys power savings policy

Power Steering Portal Status

- Under development, science project status
- Soliciting co-innovators
 - Need input from those with operational experience
 - Need operators to test drive the code

The Ask

- Interested in contributing to the project?
- Contact rbonica@juniper.net or tli@juniper.net

Security Considerations

- Like any network management function, the Power Management Portal must operate in a secure environment
- Like any network management protocol, the protocols that connect the Power Management Portal to its network elements must be secure
- If the Power Management Portal or its communications are compromised, an attacker can power down the network.

Why Only Two Power States

- Currently, the only the widely supported power states are Up and Down
- There is no consensus regarding what a third state should be
 - Standby? Low-speed?
- Implementation of a third power state may not be cost effective
 - Can components transition from Down to Up quickly enough, without a standby mode?
 - Will the low-speed mode save enough power to make it cost effective?
- Implementation and deployment of networking equipment that supports three modes will take years

Questions?