
Weighing Options with
Prometheus and gNMI

NANOG91 - JUN-2024

Mau Rojas

github.com/cloud-native-everything

Abstract
• Overview of Prometheus and gNMI for network

monitoring
• Exploring integration options:

• gNMIc
• Prometheus client library (i.e. Python)
• Exporter installed directly in Network Element
• Unified Telemetry Model (NMS or SDN)

• Dissect advantages and challenges of each option.
• Selecting the best monitoring solution based on

network needs and resources.

Prometheus and GNMI

Why Prometheus?
Prometheus’s time-series storage, pull model, rich querying, alerting features
made it a popular and comprehensive telemetry solution.

Large and active community, thanks in part to its integration with the Cloud
Native Computing Foundation (CNCF). It has a vibrant ecosystem of exporters,
integrations, and plugins. Its GitHub repository shows a significant number of
contributors and frequent updates, and there are numerous forums, Slack
channels, and other resources dedicated to its community

The Stack Prometheus/Grafana is highly popular, lightweight and more container
friendly vs other solutions like Zabbix or Nagios.

Why Prometheus?

prometheus

influxdb

grafana

zabbix

metrics

Prometheus Main Components

Prometheus Server

Retrieval

Pulls metric Data

Storage

Stores Metric Data

HTTP Request

Accepts Queries

Data Retrieval Worker Times Series Database Accepts PromQL Queries

Prom
WebUI

Grafana
GNMIc

Prom
Exporter

Targets

What is GNMI?

• gRPC Network Management Interface
• Open-source protocol developed by Google
• Versatile, efficient, and scalable

• Protocol buffers

• Retrieve and configure network state
information

gRPC client
golang

gRPC server
python

[protobuf]

Encodes YANG content
Encodes the gNMI operations

Protobu
f

YANG

HTTP2
TLS/TCP

4 Operations:
- Capabilities
- Get
- Set
- Subscribe

Client-Server RPC framework

gRPC builds on HTTP2 features to
multiplex multiple streams over a single
TCP connection

Source: https://gnmic.kmrd.dev/

gRPC Network Management Interface

NET DEV

NET DEV

NET DEV

NET DEV

PUSH

SUBSCRIBE

PUSH

SUBSCRIBE

PUSH

SUBSCRIBE

PUSH

SUBSCRIBE

CO
LLECTO

R

TSDB GRAFANA

SDN

NMS

GRPC Subscription

Integration Options

Integration Options

GNMIc

Centralized Exporter
with Unified Telemetry
Model (NMS or SDN)

Exporter installed
directly in Network

Element

Client Library
(ex. Python)

openconfig/gnmic

GNMIc as Telemetry Collector

GNMIc as Telemetry Collector

• GNMIc can be installed as a standalone application (e.g., using
Docker) or within a Kubernetes cluster (recommended for
enhanced resiliency).

• It subscribes to specified targets from which it receives telemetry
data. These targets are configured via discovery services such as
Consul.
• Using discovery mode is advisable as it eliminates the need to restart the

GNMIc process.
• The data can be output in various compatible formats, including

Prometheus and Kafka.

Python Prometheus Client

pyGNMI
clientlib

gNMI

Network
Elements

Prometheus

http_server

Python Prometheus Client

• Create your custom collector using GNMI and Prometheus
libraries, such as those available in Python.

• You can configure the information to be displayed in the
Prometheus Exporter.
• Establish a unified nomenclature across different devices and vendors.
• Incorporate information from additional sources, such as weather data or

customer support.
• Information is accessible and ready for Prometheus to retrieve.

Python Prometheus Client
from pygnmi.client import gNMIclient, telemetryParser
with gNMIclient(target=(host_entry["ip_address"], host_entry["port"]),
 username=host_entry["username"],
 password=host_entry["password"], insecure=True) as gc:

 telemetry_stream = gc.subscribe(subscribe=subscribe)

from prometheus_client import start_http_server, Gauge
lsp_ingress_octets = Gauge('lsp_ingress_octets', 'Ingress octets for LSPs’)

if __name__ == '__main__’:
 start_http_server(8000) # Port 8000 or any port you prefer
 while True:
 collect_telemetry_data(host_entry, subscribe)
 time.sleep(10)

Exporter in Network Element

gNMI

Network
Elements

Prometheus

gNMI

gNMI

github.com/karimra/srl-prometheus-exporter

Exporter in Network Element

• Open Network Operating Systems (NOS), based on the
Linux kernel such as SONiC and SR Linux.

• Install the Prometheus exporter as a container image or
as a package directly on the network element.

• Prometheus retrieves data directly from the target as its
source.

Centralized Exporter

github.com/cloud-native-everything/nsp-kafka-prometheus

gNMI

Network
Elements

Kafka
Message Queue

PrometheusExporter

Unified
Telemetry

Model

NMS

Centralized Exporter

• An SDN/NMS application retrieves data from targets
using GNMI subscriptions.

• The data is then transformed into a unified telemetry
YANG model for analysis and visualization, such as the
IETF format.

• Multiple external systems, for example, Grafana, can
consume this data via RESTCONF, Kafka, or similar
elements.
• Additional coding may be required for integration.

Integration Options
Analysis

Advantages
GNMIc (K8s Cluster)
• Container Ready
• Scaling and Resilient (multiple

instances)
• Extensions: Processors, Message

Queue, Dynamic Discovery

Python Prometheus Client
• Direct data handling
• High Customization

Exporter in Network Element
• High data fidelity
• Lower latency
• Highly Scalable

Centralized Exporter (NMS/SDN)
• Vendor-Neutral for Targets
• Highly Scalable and Resilient
• Vendor Support
• Additional Features: Automation

Frameworks, Inventory, Fault
Management

Challenges
GNMIc (K8s Cluster)
• Complex Setup

(Kubernetes/Container)
• Dealing with Multiple vendors can add

higher complexity

Python Prometheus Client
• Needs Coding expertise
• Less scale efficiency and Resilience
• Complex to Maintain
• Dealing with Multiple vendors can add

even higher complexity

Exporter in Network Element
• Limited to specific vendors. Dependent

on device capabilities
• Varied performance (uses resources in

Network Elements)
• Complex to Maintain (device upgrades)

Centralized Exporter (NMS/SDN)
• Complex pipeline
• Reliant on NMS/SDN vendor

OPEX/CAPEX
GNMIc (K8s Cluster)
• Important initial CAPEX
• Lower OPEX through automation

Python Prometheus Client
• Lower CAPEX
• Potentially higher OPEX.

Exporter in Network Element
• Varies, potentially lower CAPEX/OPEX

if devices support apps.

Centralized Exporter (NMS/SDN)
• High initial CAPEX
• Lower OPEX with unified

management.

Recommended Use Cases
GNMIc (K8s Cluster)
• Large-scale Datacenters
• Containerized network environments

like containerlab (service discovery)

Python Prometheus Client
• Small/Medium Datacenter/Edge
• Networks needing tailored telemetry

solutions

Exporter in Network Element
• Datacenter/Edge
• Networks with advanced device

capabilities for custom apps.

Centralized Exporter (NMS/SDN)
• Large, multi-vendor networks needing

unified telemetry and scalability
• Core/Transport Networks

Almost done!

Final Words

• GNMIc is assumed to be running in a containerized environment, which can add to the
complexity but also offers scalability and efficient resource usage.

• A custom Python service with PyGNMI and Prometheus_client gives flexibility and
control, which could be advantageous for specific custom needs but might not scale as
efficiently as containerized or vendor-provided solutions
• Unless you take the time to containerize it and onboard it into Kubernetes.

• Local Prometheus exporter would be an elegant solution for network devices that allow
custom applications, but this is not always the case, and the performance impact on
the network device should be carefully considered, plus the operation overhead to
maintain it.

• An NMS/SDN controller solution provides a vendor-neutral and scalable approach, ideal
for large enterprises with a multi-vendor environment. The cost can be justified by the
unified model and the scalability features it provides.

Additional resources

• gNMIc – NANOG Talk - An intuitive gNMI CLI and a
feature-rich telemetry collector – Karim
• https://youtu.be/v3CL2vrGD_8

• pyGNMI and ChatGPT to troubleshoot EVPN Datacenter
Fabrics
• https://youtu.be/dyY4PUFV2nw

• Kubernetes 101 for Network Professionals
• https://youtu.be/n2kgApcXij0

https://youtu.be/n2kgApcXij0

Thanks!
DONE WITH MY PRESENTATION

