
meshrr
Hierarchical Route Distribution @ 

Scale w/ Kubernetes
Jason R. Rokeach
Juniper Networks

NANOG 91 – Kansas City, MO
June 2024



Agenda

• Introduction
• Design
• Client Connectivity
• Use Cases
• Final Thoughts



meshrr

• “meshrr is a scale-out, hierarchically-capable, BGP 
route reflector and route server approach using 
Juniper cRPD on Kubernetes.”
• meshrr uses Kubernetes to orchestrate containerized route 

reflectors (“cRRs”) 
• Concept could be extended to other containerized BGP 

daemons suitable for RR.

https://github.com/Juniper/meshrr



Why Kubernetes?

• meshrr is targeted at use cases requiring “more than a 
few” route reflectors or hierarchies thereof

• Kubernetes enables:
• simple scaling and replication of workloads (cRRs) with built-

in resource management
• orchestrated network connectivity between & to workloads
• integrated lifecycle management
• deployment across multiple nodes and (if desired) geography

https://github.com/Juniper/meshrr



Inspiration

• Network operator required that different groups of 
routers discard routes based on policy specific to that 
group

• To avoid blackholing traffic based on best path 
selection (even with add-path), required either:
• over 100 highly-peered routers in full mesh, or
• many RRs, each with different routing policy, some of which 

only servicing 2 or 3 routers each

https://github.com/Juniper/meshrr



Kubernetes Terminology

• k8s: Kubernetes
• Node: “a worker machine in 

Kubernetes.” (VM or BMS)
• Cluster: “A set of nodes.”
• Container: “lightweight and portable 

executable image that contains 
software and all of its dependencies”

• Deployment: “manages a replicated 
application…”

• Pod: “… represents a set of 
running containers.”

• Service: “… exposing a network 
application that is running as one or 
more pods.”

k8s Cluster

Node Node

Service

D
ep

loym
en

t

Pod
Container

Container

Pod
Container

Container

Definitions from https://kubernetes.io/docs

https://kubernetes.io/docs


What is meshrr?

• Forms meshes of BGP route reflectors based on 
groups discovered by Kubernetes Services’ DNS

• meshrr cRRs are defined by k8s manifests, not 
configured by CLI or automation tools for PNFs

• Simplest case: Form a single full mesh of route 
reflectors within a k8s cluster

• More complex cases:
• Hierarchy of cRR groups with different configurations
• Control client group membership and policy by IP address 

using Kubernetes services or external DNS

https://github.com/Juniper/meshrr



UC1:  Scale-Out
Hierarchical cRR

k8s Cluster A

meshrr 
Client-Facing 

Pod

meshrr 
Client-Facing 

Pod

meshrr 
Client-Facing 

Pod

meshrr 
Core 
Pod

meshrr 
Core 
Pod

meshrr 
Core 
Pod

Client Client Client Client Client Client

Core: mesh group between Core cRRs
 subtractive group allows client-facing’ cRRs to connect
Client-Facing: mesh group with max-peers 2 to Core cRRs
         subtractive group for physical client connections

Client Client

meshrr 
Client-Facing 

Pod

LoadBalancer

apiVersion: apps/v1
kind: Deployment
metadata:
name: meshrr-core

spec:
replicas: 3

<...>
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: meshrr-

clientfacing
spec:
replicas: 4

<...>



Design



Single meshrr Pod

• meshrr-init (Init Container):
• Creates router configuration from Jinja2 

template, or derives configuration from 
persistent storage and updates 
variables

• Creates pod-specific SSH pubkey
• Image: ghcr.io/juniper/meshrr:0.2

• crpd:
• Unmodified routing daemon

• meshrr:
• Periodically checks DNS for updates to 

the dynamic list of cRRs in the k8s 
cluster and pushes changes to cRPD via 
Netconf

• Image: ghcr.io/juniper/meshrr:0.2

meshrr-init

crpd meshrr

Config
Volume

DNS

Netconf

meshrr cRR Pod



Headless Services

• Provide the DNS to glue cRRs 
together

• The YAML displayed dynamically 
creates DNS records in k8s for
meshrr-core.default.svc.cluster.local
to point to all active pods with 
labels app: meshrr and 
meshrr_region_core: "true”

apiVersion: v1
kind: Service
metadata:
name: meshrr-core

spec:
clusterIP: None
ports:
- name: bgp
port: 179
protocol: TCP
targetPort: bgp

selector:
app: meshrr
meshrr_region_core: "true"

sessionAffinity: None
type: ClusterIP



meshrr YAML Configuration

• Passed to meshrr containers as a volume mount
• General Parameters (Root PW, ASN)
• mesh BGP groups discover BGP peers through DNS and actively 

connect to them
• Each mesh BGP group is represented in one or more Kubernetes Service 

resources, which provide DNS for this discovery process
• Manually-defined endpoints in services or external DNS can also be used 

for group DNS resolution
• subtractive BGP groups accept a prefix in meshrr configuration 

and remove all discovered mesh neighbors from that prefix
• Primarily for connections from physical RR clients or lower hierarchy
• Configures BGP group(s) allowing a range, not explicit neighbors



meshrr Configuration Example
encrypted_root_pw: NOLOGIN # Can be a legitimate encrypted root PW or can be an impossible hash
asn: "65000”
bgpgroups:
- name: MESHRR-MESH
  type: mesh
  source:
    sourcetype: dns
    hostname: meshrr # FQDN for svc required if not in same namespace
- name: MESHRR-CLIENTS
  type: subtractive # Prefixes in multiple external-subtractive groups must not overlap
  prefixes:
  - 192.168.166.0/24
  # For routeserver use case, an AS range is needed; we don't set this for RR use case.
  # asranges:
  # - 65001-65500
- name: MESHRR-UPSTREAM
  type: mesh
  source:
    sourcetype: dns
    hostname: meshrr.core.svc.cluster.local # FQDN required if svc not in same namespace
  max_peers: 2 # Limits to only connecting to 2 peers from this group

Applied to the meshrr and meshrr-init containers in a pod:



Health Checks

• Current examples: Liveness + 
readiness probes on port 179
• Readiness probes gate adding 

the pod into service
• Liveness probes restart the pod’s 

containers upon failure
• Adding a health check sidecar 

container could enable checks 
on BGP neighborship 
formation or telemetric data

livenessProbe:
  failureThreshold: 3
  initialDelaySeconds: 15
  periodSeconds: 2
  successThreshold: 1
  tcpSocket:
    port: bgp
  timeoutSeconds: 3
readinessProbe:
  failureThreshold: 3
  initialDelaySeconds: 5
  periodSeconds: 2
  successThreshold: 2
  tcpSocket:
    port: bgp
  timeoutSeconds: 3



Client Connectivity



Outside BGP Client Connectivity

• MetalLB LoadBalancer services provide reachability to 
the pod
• LoadBalancers provide dynamic connectivity from outside 

into k8s overlay to one or more pods.
• Simplest k8s deployment: DNAT from outside to inside k8s 

cluster
• Alternative options, such as NodePorts, exist

• Less dynamic than LoadBalancers



MetalLB: BGP Mode

• MetalLB peers via BGP from 
each k8s node to the directly 
connected physical router to 
announce VIP address(es) of 
the cRRs’ LoadBalancer 
service(s).

• Multiple k8s nodes may permit 
traffic into the k8s cluster.
• No state sync; can create churn 

based on physical network 
routing / ECMP

meshrr cRR 
Pod

k8s node

MetalLB BGP 
SpeakerRTR

Remote 
RTR

LoadBalancer

MetalLB Announces VIP

Physical RTR Peers to cRR

TCP
Client

TCP
Server



MetalLB: L2 Mode
• All traffic enters k8s cluster through single node

• Single k8s node is bottleneck for network traffic
• RRs can still be distributed across multiple pods / k8s nodes

• Eliminates churn due to routing changes on physical 
network – may be more appropriate if multiple cRR pods 
are being load balanced

k8
s 

cl
us

te
r

k8s node 0

k8s node 1

k8s node 2

cRR cRR cRRcRR

PE PE PE PE PE

kube-proxy

cRR

kube-proxy kube-proxy



externalTrafficPolicy: Cluster

user@R1> show bgp neighbor 172.19.1.1 | match "^ *Peer.*:"  
Peer: 172.19.1.1+179 AS 65000  Local: 172.18.0.1+63221 AS 65000
  Peer ID: 10.42.4.5       Local ID: 172.18.0.1        Active Holdtime: 90

user@lothlorien-vm1:~/meshrr$ k get pods -o wide --field-selector status.podIP=10.42.4.5
NAME                        READY   STATUS    RESTARTS   AGE   IP          NODE
meshrr-lothlorien-a-7bdvm   2/2     Running   0          38m   10.42.4.5   lothlorien-vm3

user@lothlorien-vm1:~/meshrr$ k exec -it meshrr-lothlorien-a-7bdvm -c crpd – sh

# cli show bgp neighbor | egrep "^Peer|172.18.0.1" | grep -B1 172.18.0.1
Peer: 10.42.0.0+63146 AS 65000 Local: 10.42.4.5+179 AS 65000
  Peer ID: 172.18.0.1      Local ID: 10.42.4.5         Active Holdtime: 90

• Distributes traffic to pods on any node in k8s cluster
• Source NATs RR client IP
• Pairs nicely with L2 Mode



externalTrafficPolicy: Local

• Traffic from outside can only reach pods on entry node
• Eliminates Source NAT of RR client IP
• Pairs nicely with BGP mode

• Route over the physical network directly to the k8s node hosting the cRR 
pod, rather than the k8s overlay.

RP/0/RP0/CPU0:R8#show bgp neigh 172.19.1.1 | i "router ID|host"
 Remote router ID 10.42.3.6
  Local host(configured): 172.18.0.8, Local port: 25563, IF Handle: 0x00000000
  Foreign host: 172.19.1.1, Foreign port: 179

user@lothlorien-vm1:~/meshrr$ k get pods -o wide --field-selector status.podIP=10.42.3.6
NAME                        READY   STATUS    RESTARTS   AGE   IP          NODE
meshrr-lothlorien-a-4afxb   2/2     Running   0          38m   10.42.3.6   lothlorien-vm2
user@lothlorien-vm1:~/meshrr$ k exec -it meshrr-lothlorien-a-4afxb -c crpd – sh

# cli show bgp neighbor 172.18.0.8 | egrep "Peer.*:.+\."
Peer: 172.18.0.8+25563 AS 65000 Local: 10.42.3.6+179 AS 65000
  Peer ID: 172.18.0.8      Local ID: 10.42.3.6         Active Holdtime: 90



Use Cases



Basic Use Case Concepts

• DaemonSets: Replicate cRR on all nodes
• E.g. could be used to offer “Anycast RRs”, assuming care 

taken to avoid churn from routing / ECMP changes.
• Statefulness and Persistence

• Use StatefulSets and persistent volumes to retain 
configuration

• Defeats some advantages if each cRR requires individual care
• Networking

• LoadBalancers vs NodePorts
• Overlay k8s network vs in-line k8s network



UC2: Regional
Hierarchical cRRs

k8s Cluster A

meshrr 
Region 
A pod

meshrr 
Region 
B pod

meshrr 
Region 
C pod

meshrr 
Core 
Pod

meshrr 
Core 
Pod

meshrr 
Core 
Pod

Client Client Client Client Client Client

k8
s 

C
lu

st
er

 B

Core: mesh group between Core cRRs
 subtractive group allows regions’ cRRs to connect
Each Region: mesh group with max-peers 2 to Core cRRs
  subtractive group allows clients to connect



UC3: Multi-Group
Hierarchical cRR

k8s Cluster A

meshrr 
Region 
A pod

meshrr 
Region 
B pod

meshrr 
Region 
C pod

meshrr 
Core 
Pod

meshrr 
Core 
Pod

meshrr 
Core 
Pod

A B C D

k8
s 

C
lu

st
er

 B

Default route only

192.0.2.2 192.0.2.3

---
kind: "Service"
apiVersion: "v1"
metadata:
  name: "meshrr-defaultonly"
spec:
  clusterIP: None
  ports:
  - name: "bgp"
    protocol: "TCP"
    port: 179
    targetPort: 179
---
kind: "Endpoints"
apiVersion: "v1"
metadata:
  name: "meshrr-defaultonly" 
subsets: 
  - addresses:
    - ip: "192.0.2.1"
    - ip: "192.0.2.2"
    ports:
    - port: 179
      name: "bgp"

192.0.2.1192.0.2.0

k8s Manual Service Definition:



k8
s 

cl
us

te
r

Region 1 Region 2

UC4: cRRs on
Shared Nodes
Multiple, distinct 
cRRs can exist 
for different 
purposes and 
address families 
on the same k8s 
nodes

k8s node 0 k8s node 1 k8s node 2

R1 R2

L3VPN meshrr RR

IPv4 Unicast meshrr RR
(Regional)

IPv4 Unicast meshrr RR
(Core)

PE PE PE PE PE

IPv4 AF iBGP
L3VPN AF iBGP

MetalLB Load Balancer



Final Thoughts



Participate

• Lab the solution
• Develop

• BGP session-based Horizontal Pod Autoscaling support
• Additional health checks with dedicated sidecar
• Prestop hook to gracefully shut down BGP sessions
• Refine examples to use multiple clusters instead of A/B sides
• Peer discovery options other than DNS

• Discuss or create additional use cases and examples

https://github.com/Juniper/meshrr



Q: Is meshrr for you?

• A: meshrr is a concept and a starting place
• A: The concept is applicable in scenarios which:

• require scaling to many RRs
• creating meshes or hierarchies of more than a few RRs

• Benefits:
• Multiple cRRs on shared nodes in resource-managed clusters
• Consistent configuration and behavior
• Simplified horizontal scaling and rolling updates
• Dynamic discovery of neighbors
• Auto-healing capabilities



Thank you
For more information or to participate:
https://github.com/Juniper/meshrr

https://github.com/Juniper/meshrr

