meshrr

Hierarchical Route Distribution @
Scale w/ Kubernetes

Jason R. Rokeach
Juniper Networks

NANOG 91 - Kansas City, MO
June 2024

Agenda

* |ntroduction

« Design

* Client Connectivity
 Use Cases

* Final Thoughts

TUNANOG

[=] =it [m]

meshrr
[m]

 “meshrris a scale-out, hierarchically-capable, BGP
route reflector and route server approach using
Juniper cRPD on Kubernetes.”

* meshrr uses Kubernetes to orchestrate containerized route
reflectors (“cRRs")

« Concept could be extended to other containerized BGP
daemons suitable for RR.

wNANOG https://github.com/Juniper/meshrr

[=] =it [m]

Why Kubernetes?
[=]

 meshrr is targeted at use cases requiring “more than a
few" route reflectors or hierarchies thereof

e Kubernetes enables:

 simple scaling and replication of workloads (cRRs) with built-
IN resource mManagement

« orchestrated network connectivity between & to workloads
* integrated lifecycle management
« deployment across multiple nodes and (if desired) geography

WUNANOG https://github.com/Juniper/meshrr

[=] =it [m]

Inspiration

[=]

 Network operator required that different groups of
routers discard routes based on policy specific to that

group

* To avoid blackholing traffic based on best path
selection (even with add-path), required either:
« over 100 highly-peered routers in full mesh, or

« many RRs, each with different routing policy, some of which
only servicing 2 or 3 routers each

1 NANOG https://github.com/Juniper/meshrr

Kubernetes Terminology

® Kk8s: Kubernetes

Container Container

®* Pod:". represents a set of
running containers.”

® Service: “... exposing a network
application that is running as one or

more pods.” N=1aVilel=

® Node: "a worker machine in k8s Cluster
Kubernetes.” (VM or BMS)
® Cluster: “A set of nodes.” Node Node
®* Container: “lightweight and portable O
executable image that contains Pod Pod o)
software and all of its dependencies” jei
® Deployment: “manages a replicated Container Container &
application...” 3
D
-
—t

TUNANOG

Definitions from https://kubernetes.io/docs

https://kubernetes.io/docs

[=] =it [m]

What is meshrr??

« Forms meshes of BGP route reflectors based on [=]
groups discovered by Kubernetes Services' DNS

 meshrr cRRs are defined by k8s manifests, not
configured by CLI or automation tools for PNFs

* Simplest case: Form a single full mesh of route
reflectors within a k8s cluster

« More complex cases:
 Hierarchy of cRR groups with different configurations

« Control client group membership and policy by IP address
using Kubernetes services or external DNS

1 NANOG https://github.com/Juniper/meshrr

U C-I : Sca I e - O u t Core: mesh group between Core cRRs

subtractive group allows client-facing’ cRRs to connect

H . h . I R R Client-Facing: mesh group with max-peers 2 to Core cRRs
I e ra rC I Ca C subtractive group for physical client connections

. apps/vl
Dep]_oyment k8S CIUSter A
e
MESNIT -COIE wunt - R E
-’ ><_::: - =
4‘—’———— N o
apps/vl
Deployment
: lA \ / \"\ \ [)
meshrr- \i, v :’l \ \\\ A 7 \:.//’
clientfacing AR NN N PN
: \ ! \ * ‘ I \
\‘ \‘ 'l

5 4 V4 \\ 1 \
: / ,I \\\ \‘ AN
TTUUNANOG ‘ ‘ ‘ ‘ ’ ‘ ‘ ‘

Single meshrr Pod

* meshrr-init (Init Container):

* Creates router configuration from Jinja2
template, or derives configuration from
persistent storage and updates
variables

* Creates pod-specific SSH pubkey
* |Image: ghcr.iofjuniper/meshrr:0.2

* crpd:
* Unmodified routing daemon
* meshrr:

* Periodically checks DNS for updates to
the dynamiic list of cRRs in the k8s ,
cluster and pushes changes to cRPD via
Netconf

* |Image: ghcr.iofjuniper/meshrr:0.2

TUNANOG

ﬂneshrr cRR Pod

WA
<
0) <

Volume

-

Netcont W/

Headless Services

* Provide the DNS to glue cRRs
together

* The YAML displayed dynamically

creates DNS records in k8s for
meshrr-core.default.svc.cluster.local

to point to all active pods with

labels app: meshrr and
meshrr_region core: "true”

TUNANOG

vl

: Service

. meshrr-core

: None

. bgp

179
: TCP
. bgp

. meshrr

: None

: ClusterlIP

meshrr YAML Configuration

Passed to meshrr containers as a volume mount
General Parameters (Root PW, ASN)

mesh BGP groups discover BGP peers through DNS and actively
connect to them

* Each mesh BGP group is represented in one or more Kubernetes Service
resources, which provide DNS for this discovery process

* Manually-defined endpoints in services or external DNS can also be used
for group DNS resolution

subtractive BGP groups accept a prefix in meshrr configuration
and remove all discovered mesh neighbors from that prefix

* Primarily for connections from physical RR clients or lower hierarchy
* Configures BGP group(s) allowing a range, not explicit neighbors

UNANOG

meshrr Configuration Example

Applied to the meshrr and meshrr-init containers in a pod:

NOLOGIN
"65000”

MESHRR-MESH
mesh

dns

. meshrr
MESHRR-CLIENTS

subtractive

168.166.0/24

MESHRR-UPSTREAM
mesh

dns
meshrr.core.svc.cluster.local
2

Health Checks

 Current examples: Liveness +
readiness probes on port 179

 Readiness probes gate adding
the pod into service

* Liveness probes restart the pod’s
containers upon failure

 Adding a health check sidecar

container could enable checks
on BGP neighborship
formation or telemetric data

TUNANOG

Client Connectivity

Outside BGP Client Connectivity

 MetalLB LoadBalancer services provide reachability to
the pod

 LoadBalancers provide dynamic connectivity from outside
INto k8s overlay to one or more pods.

« Simplest k8s deployment: DNAT from outside to inside k8s
cluster

« Alternative options, such as NodePorts, exist
 Less dynamic than LoadBalancers

TUNANOG

MetalLB: BGP Mode

 MetallLB peers via BGP from
each k8s node to the directly

connected physical router to
announce VIP address(es) of

the cRRs' LoadBalancer
service(s).

 Multiple k8s nodes may permit
traffic into the k8s cluster.

 No state sync; can create churn
based on physical network
routing / ECMP

é k8s node \

» MetalLB Announces VIP
» Physical RTR Peers to cRR

TCP TCP
Client Server

TUNANOG

MetalLB: L2 Mode

* All traffic enters k8s cluster through single node
* Single k8s node is bottleneck for network traffic
* RRs can still be distributed across multiple pods / k8s nodes

* Eliminates churn due to routing changes on physical

network — may be more appropriate if multiple cRR pods
are being load balanceo

! (@0:] [@0:|

| | kube-proxy)

OU SQY

~
E}éu S8)

|
\

o —

kube-proxy

k8s cluster
0@
l
Z 9pou sgy

. | kube-proxy)

TUNANOG

externalTrafficPolicy: Cluster

* Distributes traffic to pods
* Source NATs RR client IP
* Pairs nicely with L2 Mode

on any node Iin k8s cluster

user@R1> show bgp neighbor_ | match "” *Peer.*:"
Peer: 172.19.1.1+179 AS 65000 Local: 172.18.0.1+63221 AS 65000

Peer ID:|10.42.4.5| Local II
|

D-—172.18.0. 1 Active Holdtime: 90

user@lothlorien-vml:~/meshrr$ k ge
NAME READY
2/2

4
t pods -o wide --field-selector status.podIP$10.42.4.5|
STATUS RESTARTS AGE IP NODE
Running 0 38m 10.42.4.5 lothlorien-vm3

user@lothlorien-vml:~/meshrr$ k ex

c -t [IESAFFEIOPATOFTEREaTHa] - crpd - st

¥ Y
cli show bgp neighbor | egrep "APeerﬂ172.18.®. r | grep —Bl|172.18.@.ﬂ

Peer: |10.42.0.0463146 AS 65000 Local: 10.42.4.5+179 AS 65000
Peer ID: |172.18.0.1] Local ID:[10.42.4.5] Active Holdtime: 90

TUNANOG

externalTrafficPolicy: Local

* Traffic from outside can only reach pods on entry nhode
* Eliminates Source NAT of RR client IP

* Pairs nicely with BGP mode

* Route over the physical network directly to the k8s node hosting the cRR
pod, rather than the k8s overlay.

RP/OQ/RPO/CPUO:R8#show bgp neigh |[172.19.1.1] | i "router ID|host"

Remote router ID|10.42.3.6
Local host(configured):|172.18.0.8L Local port: 25563, IF Handle: Ox00000000

Foreign host: 172.19/1.1, Foreign port: 179
A 4
user@lothlorien-vml:~/meshrr$ k get pods -o wide --field-selector status.podIP{l®.42.3.6|
NAME READY STATUS RESTARTS AGE IP NODE
|meshrr-1oth10r1en-a-4afbe 272 Rummin o) 38m 10.42.3.6 lothlorien-vm2
user@lothlorien-vml:~/meshrr$ k exec -it meshrr-10th10r1en-a-4afxb|—c crpd - sh
\ 28

cli eighborllzz_lﬁ_LLjﬂ | egrep "Peer.*:.+\."
Peer: |1/2.18.0.8+25563 AS 65000 Local: 10.42.3.6+179 AS 65000

Peer ID: |172.18.0.8 Local ID:[10.42.3.6] Active Holdtime: 90

TUNANOG

Use Cases

Basic Use Case Concepts

« DaemonSets: Replicate cRR on all nodes

« E.g.could be used to offer “Anycast RRs", assuming care
taken to avoid churn from routing / ECMP changes.

« Statefulness and Persistence

« Use StatefulSets and persistent volumes to retain
configuration

« Defeats some advantages if each cRR requires individual care

* Networking
 LoadBalancersvs NodePorts
* Overlay k8s network vs in-line k8s network

TUNANOG

UC2: Regional

Hierarchical cRRs &=

-

k8s Cluster B

N

Core:

mesh group between Core cRRs

subtractlve group allows regions’ cRRs to connect
mesh group with max-peers 2 to Core cRRs
subtractive group allows clients to connect

/83 Cluster A

UC3: Multi-Group
Hierarchical cRR

<

N

k8s Cluster B

\

192.0.2.0 192.0.2.1

192.0.2.2

192.0.2.3

Default route only

k8s Manual Service Definition:

. "Service"
: Ilvlll

. "meshrr-defaultonly”

: None

"bep"
S O

: 179
. 179

. "Endpoints”
: Ilvlll

. "meshrr-defaultonly”

: "192.0.2.1"
: "192.0.2.2"

N WAS
: Ilbgpll

IPv4 Unicast meshrr RR

IPv4 AF iBGP (Core)

L3VPN AF iBGP

UC4: cRRs on
Shared Nodes

Multiple, distinct 7/ ——= (e rode 1) " esnode2))

cRRs can exist
for different ‘ ‘

purposes and

address families

On the Same k8$ MetalLB Load Balancer
nodes

Region 1) _ Region 2)

IPv4 Unicast meshrr RR
(Regional)

l k8s cluster

UNANOG N

Final Thoughts

[=] =it [m]

Participate

« Lab the solution E
« Develop

« BGP session-based Horizontal Pod Autoscaling support
Additional health checks with dedicated sidecar

Prestop hook to gracefully shut down BGP sessions

« Refine examples to use multiple clusters instead of A/B sides
 Peer discovery options other than DNS

* Discuss or create additional use cases and examples

1 NANOG https://github.com/Juniper/meshrr

Q: Is meshrr for you?

 A:meshrris aconcept and a starting place

 A:The concept is applicable in scenarios which:

* require scaling to many RRs
« creating meshes or hierarchies of more than a few RRs

* Benefits:
 Multiple cRRs on shared nodes in resource-managed clusters
« Consistent configuration and behavior
« Simplified horizontal scaling and rolling updates
 Dynamic discovery of neighbors
« Auto-healing capabilities

UNANOG

Thank you

For more information or to participate:
https://github.com/Juniper/meshrr

TUNANOG

https://github.com/Juniper/meshrr

