The eBPF Systems Revolution

Joe Stringer 11-JUNE-2025

ISOVALENT now part of CISCO

now part of cisco

Agenda

- How eBPF changes the pace of innovation
- Real-world Applications
 - Katran Layer 4 Load Balancer (L4LB)
 - Cilium Networking for Kubernetes
- A look at eBPF beyond networking

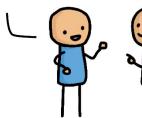


Makes the OS kernel programmable in a secure and efficient way.

"What JavaScript is to the browser, eBPF is to the Linux Kernel"

Why tebpf?

Before eBPF


Application Developer:

i want this new feature to observe my app

Hey kernel developer! Please add this new feature to the Linux kernel

1 year later...

i'm done. The upstream kernel now supports this.

But i need this in my Linux distro

5 year later...

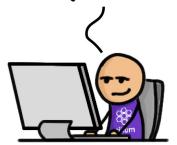
Good news. Our Linux distribution now ships a kernel with your required feature

OK but my requirements have changed since...

After eBPF

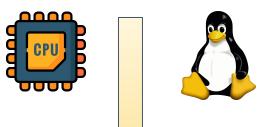

Application Developer:

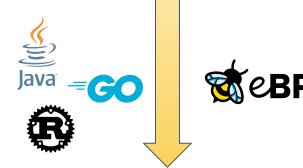
i want this new feature


eBPF Developer:

OK! The kernel can't do this so let me quickly solve this with eBPF.

A couple of days later...

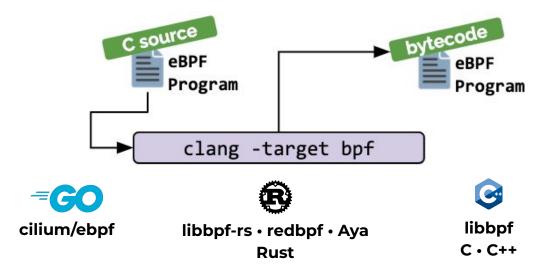

Here is a release of our eBPF project that has this feature now. BTW, you don't have to reboot your machine.



Long Innovation Cycle

Long innovation cycle results in need to predict use cases or stick to providing building blocks

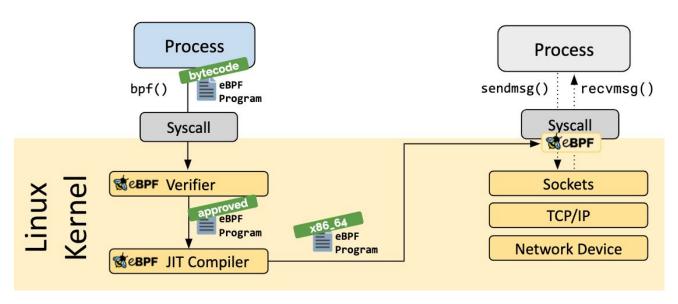
Programmability allows to continuously adapt to changing requirements and innovate quickly



How does Webpf work?

Language · Runtime

eBPF Language



RFC 9669 BPF Instruction Set Architecture (ISA)

Multiple SDKs and Compilers exist to get to eBPF bytecode

eBPF Runtime

The runtime accepts bytecode, verifies it, just-in-time compiles it, and runs it at the requested hook point.

eBPF Platform

Secure

Runtime verification

Program Signing

Efficient

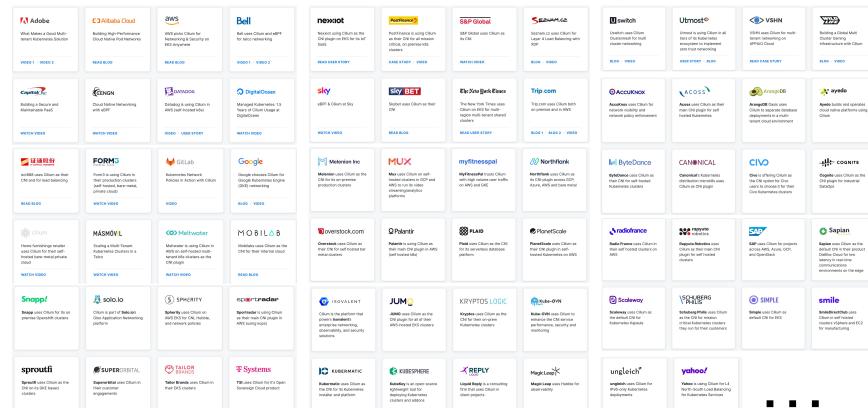
JIT compilation

Embedded in OS

Per-CPU data structures

Portable

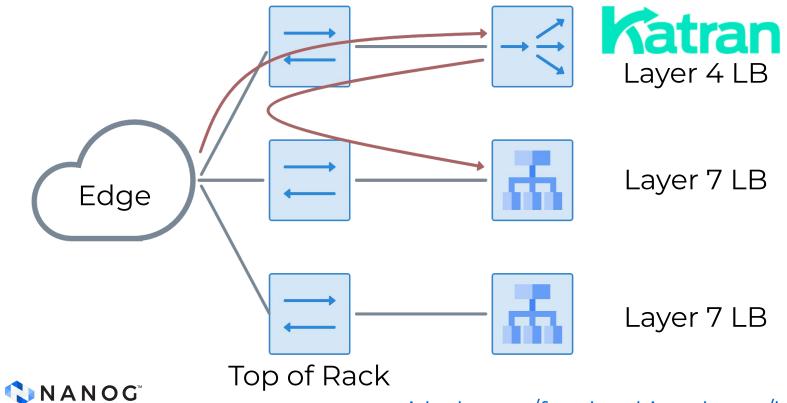
Generic Bytecode


Data Type

Discovery

Stable API to OS

Where is eBPF used today?



Real World Applications

Networking in the Data Center

Katran: Layer 4 Load Balancer

Load Balancing Challenges

- Performance: High CPU with IP Virtual Server (IPVS)
 - So, run dedicated instances (new deployment challenges)
 - Difficult to manage a fair balance of Layer 4, Layer 7 LB
- Availability
 - Adjusting for incident or planned outage
- Management
 - Kernel changes to adjust algorithm

How eBPF enabled Katran

Performance

Reduce the cost per packet by using XDP

Deploy both L4 and L7 on the same hosts

Availability

Explore newer algorithms, mix of algorithms

Consistent Hashing (Maglev)

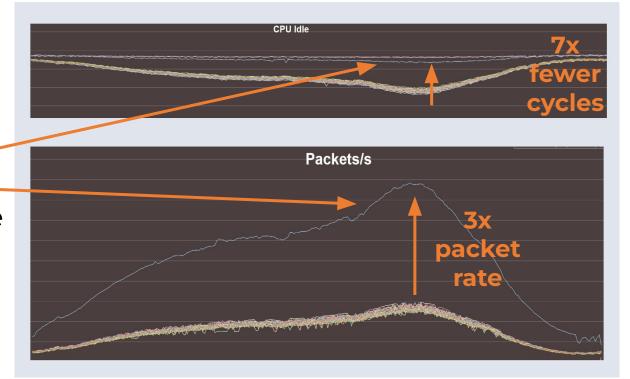
Management

Dynamically update without reboot

Iterate more quickly on solutions

XDP: eXpress Data Plane

- Programmable layer in the network driver
 - Inspired by Intel Data Plane Development Kit (DPDK)
 - Minimize the CPU instructions executed per packet
 - Avoid unnecessary memory allocations, copies
- Don't assume all packets reach a local application
 - Default path: Pass through
 - Support one-armed routers, firewall, denial of service
- Define network behavior using eBPF


Load Balancing at Meta

Baseline:

IPVS

Katran:

- eBPF runtime
- XDP attach

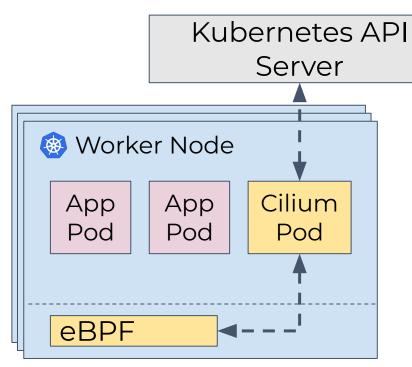
Cilium

Networking & Load-Balancing

- Container Network Interface (CNI)
- Kubernetes Services
- Multi-cluster
- Virtual Machine Gateway

Network Security

- Network Policy
- o Identity-based
- Encryption


Observability

- Metrics
- Flow Visibility
- Service Dependency

Networking for Cloud Native Apps

Declarative Intent

- Nodes, Pods
- Network Policies
- Services, Endpoints

Synchronize intent to workers

- Connectivity (IPAM, routing)
- External connectivity
- Service-based Load Balancing
- Identity-aware Network policy
- Flow visibility & metrics
- Transparent Encryption
- Multi-cluster Routing & Security

Rough Numbers

- x0 deployments per minute
- x00 workloads per node
- x,000 nodes per cluster
- x0,000 services
- x00,000 containers

Optimizing Linux Networking

Load Balancing

Avoid linear iteration for Virtual IP resolution

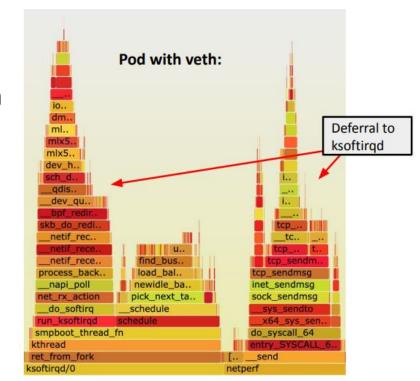
Per connection rather than per packet LB

Routing

Skip costly upper stack operations

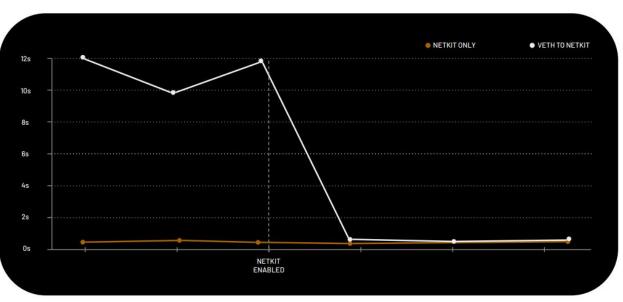
Query native Linux routing verdict from kernel tables

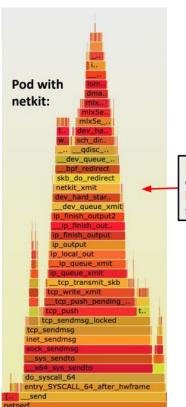
Scheduling


Optimize packet handover between logical networks

Participate in packet departure scheduling (EDT)

Limitations in Virtual Ethernet


- Observation: Containers slower than the base host
 - Inefficient scheduling can have a big impact
 - What if we try a "run to completion" model?
 - Combine with other optimizations - Early Departure Time (EDT) scheduling; BIG TCP etc.



Netkit driver

- 100GiB single stream TCP @ 8K MTU
- Meta: P99 Reduction from 12s to 0.1s

Remains in process context all the way, leading to better process scheduler decisions.

sources

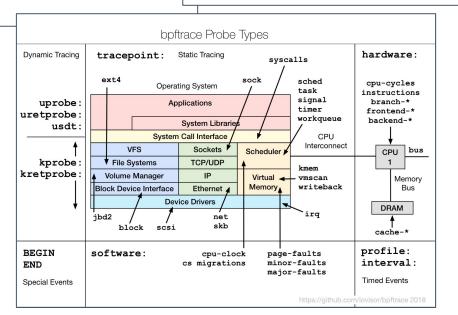
eBPF Beyond Networking

Active areas of development

eBPF Use Cases

Microsoft Proposes "Hornet" Security Module For The Linux Kernel

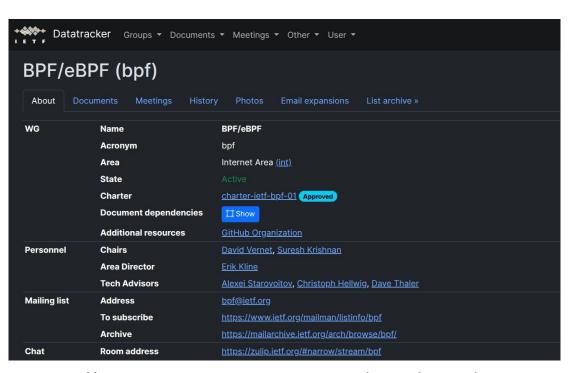
Written by Michael Larabel in Microsoft on 21 March 2025 at 02:21 PM EDT. 28 Comments


NANOG™

Microsoft's newest open-source contribution to the Linux kernel being proposed is... Hornet, a Linux security module (LSM) for providing signature verification of eBPF programs.

Using sched_ext to improve frame rates on the SteamDeck

Ideas behind the LAVD scheduler



26

Cross-Platform Standardization

https://datatracker.ietf.org/wg/bpf/about

EXECUTE Expension

Platinum

Silver

eBPF Foundation Announces \$250,000 in Grant Awards for Five eBPF Academic Research Projects

By Dan Brown August 29, 2024 7 min read

Projects will advance eBPF's open source technology by improving scalability, static analysis, verifier, virtual memory and more

eBPF is unlocking systems innovation

Get Started Today

ebpf.io

ebpf.io/slack