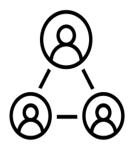
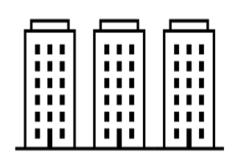
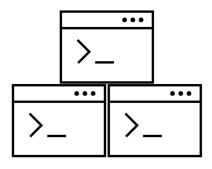
Software Defined Backbone


Experience with a deployed SD-WAN


Prashanth Kumar Jaffar Abdul 29-OCT-2025

How big is LinkedIn?



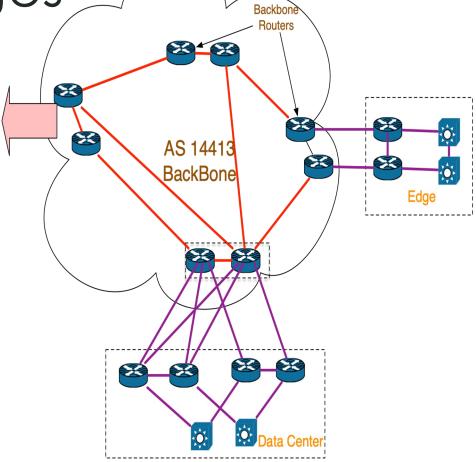
Multiple Centers

500K+ servers

3000+ services

2

Backbone Challenges

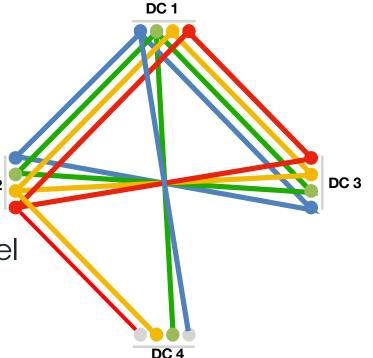

Peerina

 RSVP-TE Backbone with Auto Bandwidth for Internet & Inter-DC traffic.

• Scaling: Inter DC traffic is bursty & grew faster than Internet traffic.

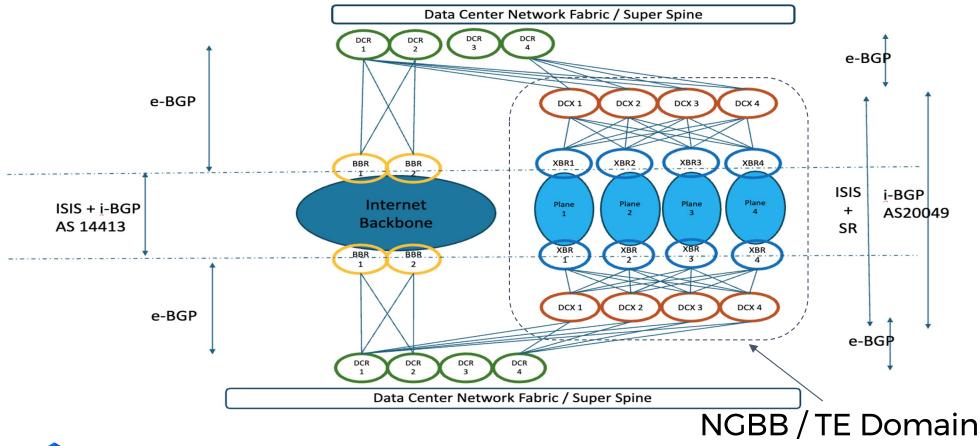
 Efficiency: Prioritization and ability to use all available capacity.

 Operations: Manageability overhead and RSVP lacked global view.


Next Gen Backbone (NGBB)

 Built separate Backbone for Inter DC Traffic.

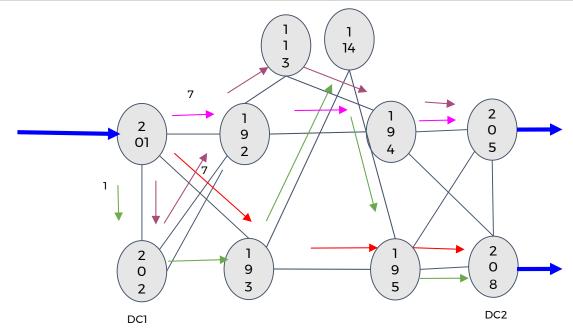
 Scaling: Planar architecture, IS-IS SR control plane with MPLS data plane.


• Efficiency: Centralized view of traffic demands and allocation with central prioritization.

 Operations: Operated on network model on what, global management tooling.

Backbone Control Plane Design

5


Centralized Policy Management

- Centralized controller analyzes traffic demands periodically or when topology changes.
- Priority of Traffic is market at source.
- Compute the paths to satisfy demands based on priority
- Pushes Policy Based Routes (PBR) on to ingress routers with CBF into Weighted Cost Multiple Paths (WCMP).

Ingress Router: Class Based Forwarding

Forwarding Equivalence Class (FEC)	Nexthop Group (NHG)
1 permit ip any 10.x.24.0/21 dscp 18	0_0_0_010_x_24_0_210x12
1 permit ip any 10.x.24.0/21 dscp 0	0_0_0_010_x_24_0_210x0

Ingress Router - CBF (continued)

Nexthop Group (NHG)	Label Stack	Weight
0_0_0_010_x_24_0_210x12		
$\begin{pmatrix} 1\\13 \end{pmatrix} \begin{pmatrix} 1\\14 \end{pmatrix}$	900194 900205 nexthop 10.x.1.3	7
2 01 19 19 4 0 5 0 5 DC2	900195 900208 nexthop 10.x.1.4	7
	900192 900113 900194 900205	
	nexthop 10.x.1.2	1
	900193 900114 900195 900208	
	nexthop 10.x.1.2	1

NGBB QoS Design

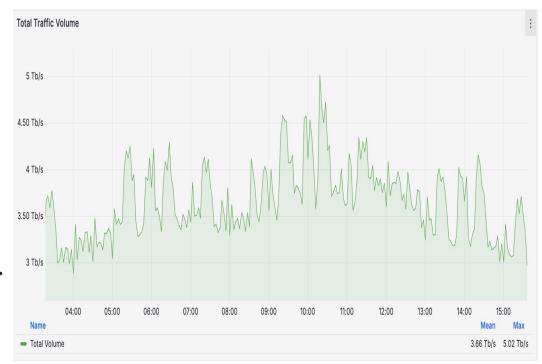
- Hosts marks DSCP based on workload priority.
- Network Trust DSCP & different weights assigned to different FEC. **Link Bandwidth Split**
- Controller steers traffic based on FEC priority.
- Network Control traffic follows strict priority queue - Always handled first.
- Routers drop the lowest priority traffic during congestion.

10.0%

Migration

Phase 1: Migrate Traffic to Backbone without TE

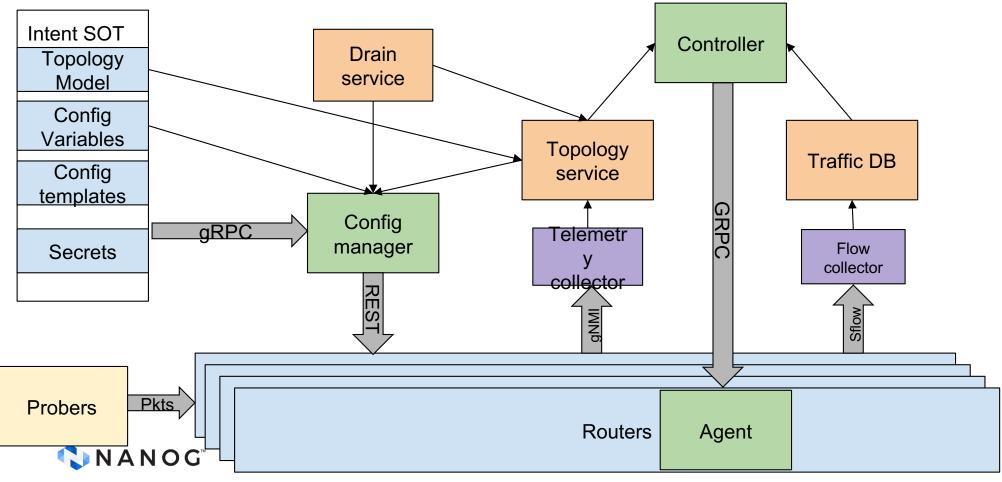
Phase 2: Introduce TE to Backbone Gradually


- Parallel SR Best-Effort Backbone for Inter-DC traffic.
- Migrated Traffic between 2 sites.
- Gradually onboarding rest of the sites.

- Introduced SDN based TE gradually for subset of Networks between 2 sites.
- Full SDN based TE rollout across all sites.

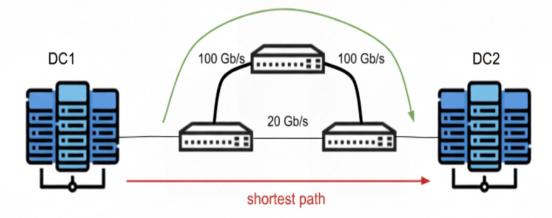
Impact

- Use up to 95% total capacity & cost efficient.
- Translate Business logic to traffic policies.
- Tailored QoS and better application performance.
- Simplified network operations.
- E2E visibility into traffic patterns & network health.



Software Design

- Fully in house built, written mostly in Go.
- Microservice architecture & gRPC for inter service communications.
- REST, gRPC, & gNMI used for device interactions.
- Automated deployment of configurations, topology.
- Maintain code and SoT separately.



Software Architecture

Centralized Controller

- Leverage full network capacity.
- Paths are expressed using PBR in the routers.
- Different traffic types handled differently.

bandwidth optimal path

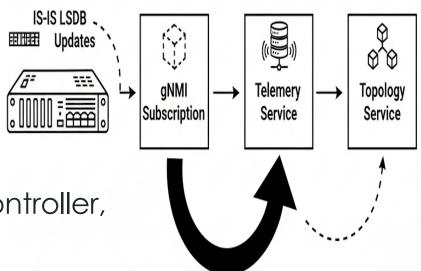
React to changing traffic conditions.

Traffic Demand Calculation

 NGBB Edge devices (DCX) exports the flow data using sFLOW.

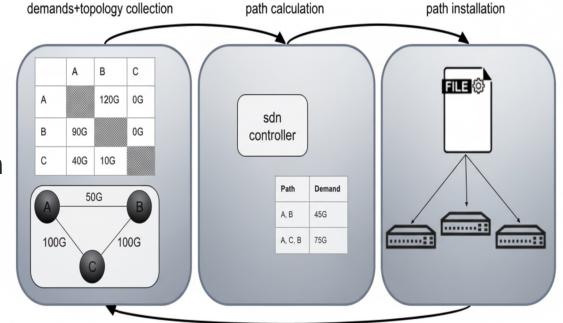
Sampling rate is set to 1 in 1000 packets.

 Multiple collectors instances are deployed per site for redundancy.


 Samples are aggregated by priority at each site using supernets.

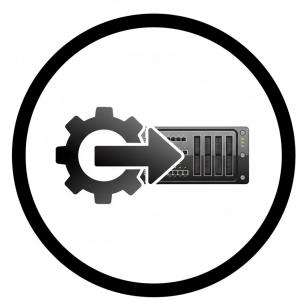
	A	В	С
A		120G	70G
В	900G		10G
С	400G	100G	

Operational Topology Acquisitions


- Operational topology built using IS-IS LSDB info.
- Routers stream LSDB info via gNMI.
- Topology service parses LSDB updates to build the network graph.
- Graph updates are pushed to the controller, initiating CSPF.

Traffic Engineering Algorithm

- TE algorithm runs every 10 seconds or on topology change.
- CSPF computes bandwidth constrained paths.
- Paths scope from ingress DCX device to destination site.


Policy computation & installation

- When multiple paths exist, they are weighted based on available capacity.
- Policies define paths as an MPLS label stack of Node SIDs.
- The controller pushes vendor-agnostic policies to routers via gRPC.
- A device-specific agent on the router translates policies into flow data.

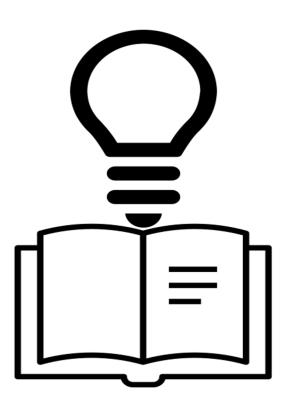
Configuration Management

- We think about the network, not about individual devices.
- No access to CLI for normal operations.
- Software manage full configuration for the backbone devices.

 Multiple sources to build a config: topology, variables, secrets, templates.

Safety and Manageability

- Fail Static: Fallback to IGP shortest path from Centralized controller during failure.
- A big red button to disable the controller for emergency.
- Black box real-time prober.
- Drain and Risk assessment with Simulation.



Lessons Learned

- Be deterministic with traffic allocation.
- Humans should express what and not how.
- Intended vs Operational.
- Rigorous simulation and lab testing are critical.
- Progressive rollout enabled early issue detection and faster iteration.

Lessons Learned (continued)

- Delta between controller traffic allocation vs real traffic in the network.
- Capacity accommodation for dark traffic is tricky.
- Vendor agent dependency for policy injection can restrict portability.
- Visibility to map the controller demand allocation to network links.

Thank you

