

Steve Tam, Wireless Engineer Anusha Roy, Wireless Engineer October 2025



#### Intro

- This presentation is intended to:
  - Provide some firsthand insight on lessons learned from migrating a enterprise wireless network to using IPv6
- Assumes some basic understanding of how IPv6 works
  - Does not cover how to potentially implement IPv6 for the rest of your network



### **Agenda**

- Why IPv6?
- Meta's corporate Wi-Fi network
  - General overview & current scale
- Topology & timeline
- Migrating infrastructure
- Migrating clients
- Lessons Learned



### Why IPv6?



### Why IPv6? (for the Wi-Fi network)

- Meta has been a heavy adopter of IPv6, both externally & internally
  - All of our internal user networks are either dual-stacked or IPv6-only
  - Development servers are IPv6-only
- In 2018, we began running out of private IPv4 space
  - Only the 172.16.0.0/12 and 192.168.0.0/16 ranges are used for the corporate network



### Why IPv6? (cont'd)

- In order to keep opening up new offices, we needed to be aggressive with migrating to IPv6
- From an operator perspective simplified deployments
  - /64 for each AP subnet = 2^64 addresses available
  - No calculations needed upfront to right-size the AP subnet
  - No need to resize the AP subnet when expanding a site



### Why IPv6? (cont'd)

- Same goes for clients less of a need to constantly add IPv4 space as client counts go up
  - Especially in a world where devices are increasingly connecting over Wi-Fi
  - Flash crowds are a regular occurrence



# Overview of Meta's Wi-Fi network



### Overview / Scale

- Covers all Meta locations globally:
  - Offices in 90+ cities
  - 28 data centers
  - 76k employees
- ~100k wireless clients daily
  - macOS, Windows, Linux, Chrol
  - iOS, Android
  - Wearables (Oculus, Orion) and robots





### Overview / Scale

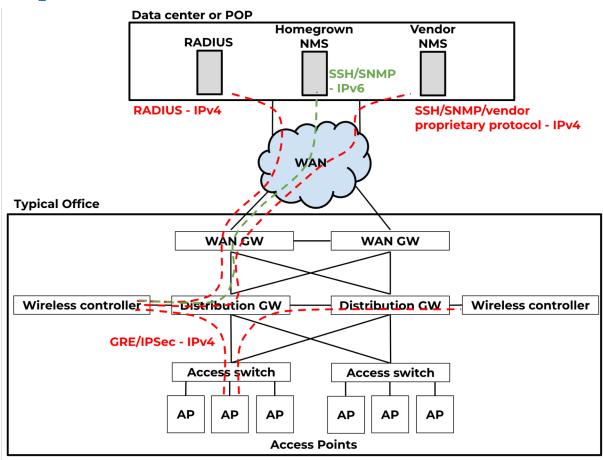
- Multi-vendor network:
  - Using the top two wireless LAN vendors by market share
  - Primarily on-prem & controller-based
- ~40k+ wireless access points
- ~400+ wireless controllers
- Using both vendor-provided network management systems (NMS) as well as homegrown ones





### **The Meta Corporate WLAN**

- 3 main SSIDs:
  - Employee (802.1x auth)
  - Guest (PSK)
  - Lab/Test (PSK + MAC auth)



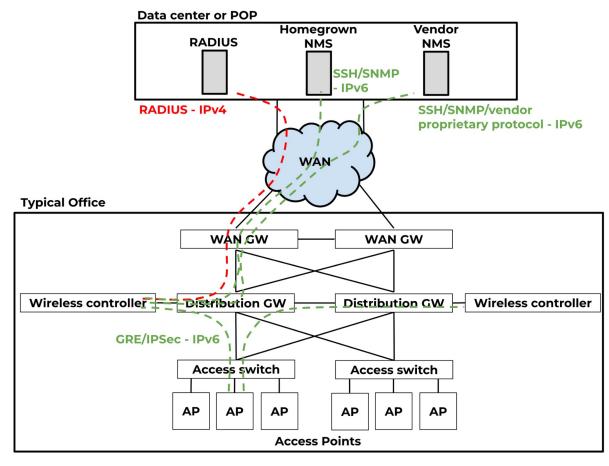



## **Topology / Timeline**



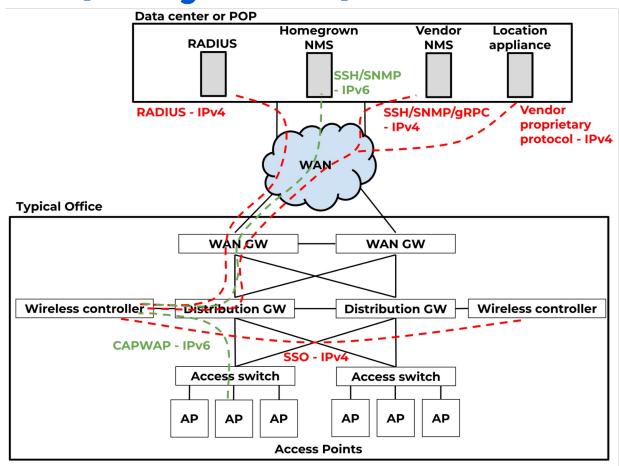
### Before - pre-2018






### Timeline (Vendor 1)

- June 2018 First IPv6-only pilot office
- July 2018 Guest network goes IPv6-only for new sites
- Aug 2018 Declaration that all new office builds go IPv6only for the AP VLAN
- Dec 2018 First HQ site migrated to using IPv6 for APs
- Feb 2019 Vendor 1's NMS begins using IPv6 to controllers
- Dec 2019 Completed migration of all Vendor 1's APs to IPv6



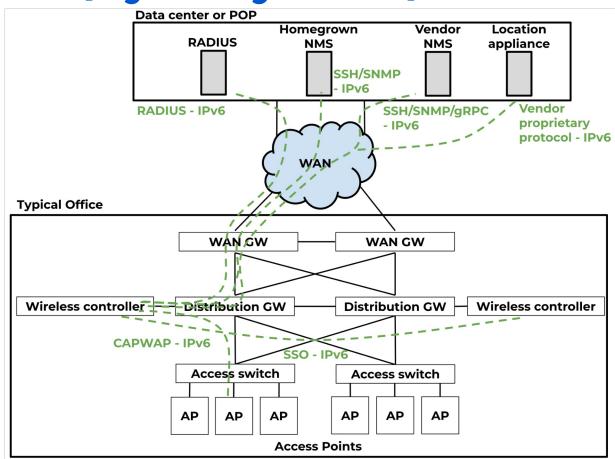

### **Vendor 1 (end of 2019)**





### **Vendor 2 (early 2020)**






### **Timeline (Vendor 2)**

- Jan 2020 APs using IPv6 to controllers
- Feb 2021 Controller SSO & NMS using IPv6
- Mar 2021 Location appliance using IPv6
- Feb 2022 RADIUS authentication over IPv6



### Vendor 2 (by early 2022)





#### **About RADIUS...**

- It's from one of the two vendors that we use for WiFi
- Took a number of years for it to fully gain IPv6 support
- When using IPv4, we added controllers/switches just once:
  - By using a broad /12 or /16 range in a device group
  - Helps avoid adding them one-by-one each time a new one is deployed



### **About RADIUS...**

- With IPv6 "support" initially added:
  - We had to add controllers/switches individually by /128
  - That's 400+ controllers and 13k+ switches
  - Ended up building a script to add them by API
  - Support for IPv6 address ranges in a device group was added later



### Migrating Infrastructure



### **Controller Discovery**

- Typical methods:
  - Static
  - DNS
  - DHCPv6 option 52
    - Example:

```
subnet6 fd00:0:0:100::/64 {
    range6 fd00:0:0:100::1000 fd00:0:0:100::2000;
    option dhcp6.capwap-ac-v6 fd00::100:192:168:1:50;
}
```

Depending on your DHCPv6 server, raw options may be required
 NANOG

### **Controller Discovery (Vendor 1)**

APs successfully discovering a controller using DHCPv6 option 52:

```
Enable IPv6 for the Conductor v6 discovery
Enabling DHCPv6 ...
```

```
Running ADP...Done. Conductor is fd00::100:192:168:1:50 conductor is changed from 0 to fd00::100:192:168:1:50, cleanup cached info for old conductor AP rebooted Fri Aug 1 00:40:36 UTC 2025; System cmd at uptime 0D 0H 4M 26S: uap conversion successful
```



### **Controller Discovery (Vendor 1)**

AP joined to the controller over IPv6:

```
(WLC) [mynode] #show ap database long
AP Database
                                   IP Address
                           AP Type
                  Group
                                                        Status
                                                                   Flags
                                                                          Switch IP
Name
00:4e:35:c6:93:4e
                  default
                           535
                                    fd00:0:0:100::1136
                                                        Up 4m:54s
                                                                   rIL
                                                                          fd00::100:192:168:1:50
```



### **Controller Discovery (Vendor 1)**

AP joined to the controller over IPv6:

```
(WLC) [mynode] #show ap consolidated-provision info ap-name 00:4e:35:c6:93:4e
ap name: 00:4e:35:c6:93:4e
ipv4 address type: dynamic
ipv4 address: 192.168.1.168
ipv4 netmask: 255.255.255.0
ipv4 gateway: 192.168.1.1
ipv4 lease: 6912
ipv4 dhcp server: 192.168.1.1
ipv4 dns server: 8.8.8.8, 8.8.4.4
ipv6 address type: dynamic(DHCPv6)
ipv6 address: fd00:0:0:100::1136
ipv6 lease: 2591831
ipv6 dns server: 3ffe:501:ffff:100:200:ff:fe00:3f3e
ipv6 gateway: fe80::92ec:77ff:fe8f:59c1
ipv6 dhcp option52: fd00::100:192:168:1:50
conductor preference: IPv4
Protocol in Use: IPv6(NO_IPV4_MASTER)
conductor: fd00::100:192:168:1:50
conductor discover type: DHCPv6
previous lms: none
lms addrs [0]: fd00::100:192:168:1:50
```



### **Controller Discovery (Vendor 2)**

APs successfully discovering a controller using DHCPv6 option 52:

```
CAPWAP State: Discovery
Got WLC address fd00::100:192:168:1:50 from DHCPv6.
Discovery Request sent to fd00::100:192:168:1:50, discovery type DHCP(2)
Discovery Request sent to 255.255.255, discovery type UNKNOWN(0)
Discovery Request sent to ff02::18c, discovery type UNKNOWN(0)
Discovery Response from fd00::100:192:168:1:50
No IPv4 AP Mgr in IPv4 pref mode. Try IPv6 mode...
CAPWAP State: DTLS Setup
CAPWAP State: Join
Sending Join request to fd00::100:192:168:1:50 through port 5248
Join Response from fd00::100:192:168:1:50
AC accepted join request with result code: 0
Received wlcType 0, timer 30
TLV ID 2216 not found
TLV-DEC-ERR-1: No proc for 2216
RTNETLINK answers: No such file or directory
CAPWAP State: Image Data
AP image version 8.10.104.96 backup 0.0.0.0, Controller 17.8.0.144
Version does not match.
```



### **Controller Discovery (Vendor 2)**

• AP joined to the controller over IPv6:

```
      WLC#sh wireless stats ap join summary

      Number of APs: 1

      Base MAC
      Ethernet MAC
      AP Name
      IP Address
      Status

      04eb.409f.9f80
      04eb.409e.2724
      AP04EB.409E.2724
      fd00::200:4ced:6526:d555:328e
      Joined

      WLC#
```



### **Migrating Clients**



# **Key Considerations for Migrating Clients to IPv6**

- Host Initialization
  - Devices can't instantly identify if a network is IPv4-only, dualstack, or IPv6-only
  - To ensure seamless connectivity, they typically configure both IPv4 and IPv6 right away
- Disabling IPv4
  - Some devices don't support IPv6
  - IPv6-only networks require DNS64 and NAT64 to reach IPv4 websites



#### **IPv6 Allocation: SLAAC & DHCPv6**

- IPv6 address allocation for clients:
  - DHCPv6 for stateful assignment
    - Android doesn't support DHCPv6
    - DHCPv6 is basically like DHCPv4
  - SLAAC for stateless auto-address configuration
    - RDNSS for advertising DNS servers (not all platforms support this)
- Can mix using SLAAC & DHCPv6 with the managed-config and other-stateful-config flags in router advertisements



### Large Subnet/VLANs on IPv6

- Broadcast/multicast traffic can cause network congestion and poor performance
  - IPv6 is more "chatty"- relies on multicast for essential functions like Neighbor Discovery
- On wireless, multicast is treated like broadcast—sent to all clients, often at the lowest data rate
- As the number of clients grow, so can the amount of broadcast/multicast traffic



### **Neighbor Discovery Caching**

- Wireless controllers implement ND caching
- Controller keeps a cache of known IPv6 clients/neighbors
- When a device sends a Neighbor Solicitation (NS):
  - Controller checks its cache
  - If the target is known, the controller responds directly or forwards only to the relevant client
  - Prevents NS flooding to all clients on the VLAN & conserves airtime



### Meta's Wi-Fi User Networks

- Employee = dual stacked w/ strides to go IPv6-only
  - Mobile devices (phones): IPv6-only on Wi-Fi
  - Laptops: new offices are IPv6-only; older sites still dualstacked
  - Have better control over the device mix which tends to be all IPv6-capable



### Meta's Wi-Fi User Networks

- Guest = dual-stacked
  - Tried IPv6-only for awhile but had to go back and add IPv4
  - No control over device mix
    - External vendors bring in laptops with IPv6 disabled & network settings locked down by IT policy
- Lab = dual-stacked
  - Some IPv4-only IoT & wearable devices to deal with



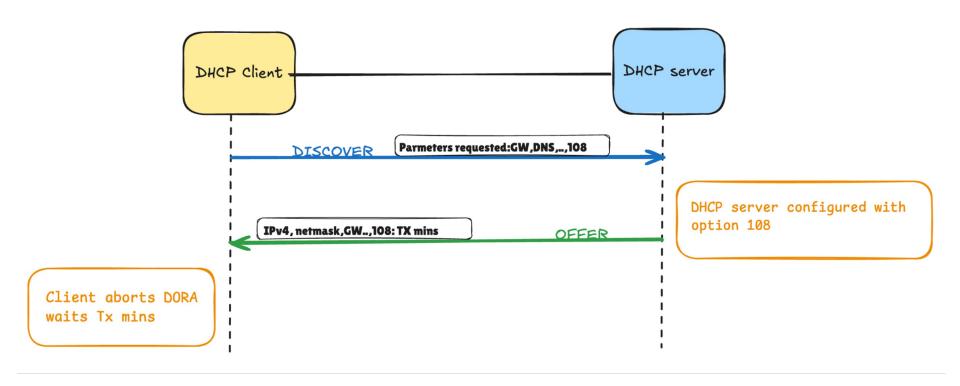
### **Migrating Clients**

- For IPv6-only networks, we rely on DNS64 & NAT64
- Some fun IPv6-only related issues previously encountered:
  - Fedora network manager drops every ~45 seconds without an IPv4 address
  - **iOS 14.7** iPhone drops on Wi-Fi every ~60 seconds
  - Android 15 drops due to low RA lifetime values ( <3 minutes )</li>
  - Microsoft Outlook app on Android unable to sync/send emails on an IPv6-only network



### **DHCPv4 option 108**

- Meta's Wi-Fi network is predominantly dual-stacked
  - But can turn into single stack during busy hours
  - IPv4 over-utilization causes client issues
    - Hard WiFi disconnects on Linux
    - Applications not relying on DNS64
    - No IPv6 fallback if IPv4 isn't available
  - Fixing those issues is a game of whack-a-mole




# DHCPv4 option 108 → What is it?

- Tells the client to disable its IPv4 stack
- Rides over IPv4, thus requires some available leases
- Clients also enable CLAT (Customer-Side Translator)



# DHCPv4 option 108 → What is it?

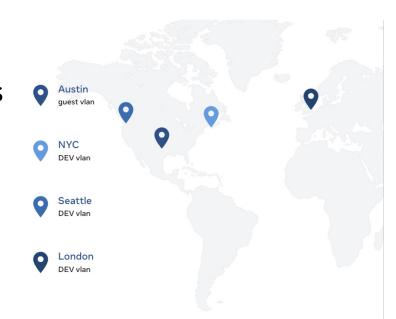




### With and Without Option 108

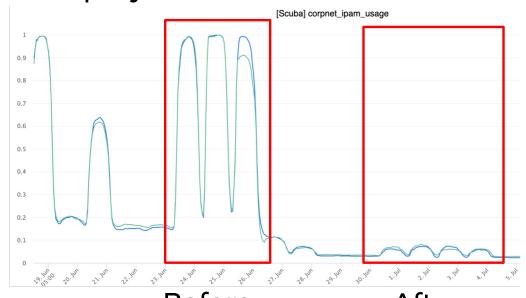
```
Dynamic Host Configuration Protocol (Offer)
    Message type: Boot Reply (2)
    Hardware type: Ethernet (0x01)
    Hardware address length: 6
    Hops: 1
    Transaction ID: 0x5b1b1918
    Seconds elapsed: 0
  > Bootp flags: 0x0000 (Unicast)
    Client IP address: 0.0.0.0
    Your (client) IP address: 100.112.210.46
    Next server IP address: 0.0.0.0
    Relay agent IP address: 0.0.0.0
    Client MAC address: 5e:ae:f5:9f:24:b9 (5e:ae:f5:9f:24:b9)
    Server host name not given
    Boot file name not given
    Magic cookie: DHCP
  Option: (53) DHCP Message Type (Offer)
  > Option: (54) DHCP Server Identifier (100.112.210.2)
  Option: (51) IP Address Lease Time
  > Option: (1) Subnet Mask (255.255.254.0)
  > Option: (3) Router
  > Option: (6) Domain Name Server
  > Option: (15) Domain Name
    Option: (108) IPv6-Only Preferred
      IPv6-Only Preferred wait time: 4 hours (14400)
    Option: (119)
  > Option: (255)
```

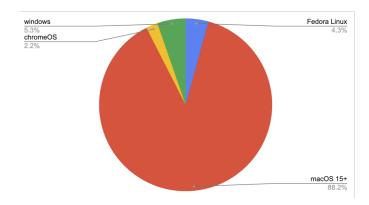
**NANOG**™


With Option 108

```
Dynamic Host Configuration Protocol (Offer)
  Message type: Boot Reply (2)
  Hardware type: Ethernet (0x01)
  Hardware address length: 6
  Hops: 1
  Transaction ID: 0x5b1b1919
  Seconds elapsed: 1
> Bootp flags: 0x0000 (Unicast)
  Client IP address: 0.0.0.0
  Your (client) IP address: 172.29.45.30
  Next server IP address: 0.0.0.0
  Relay agent IP address: 0.0.0.0
  Client MAC address: fe:b6:72:9e:fc:2b (fe:b6:72:9e:fc:2b)
  Server host name not given
  Boot file name not given
  Magic cookie: DHCP
  Option: (53) DHCP Message Type (Offer)
  Option: (54) DHCP Server Identifier (172.29.155.3)
  Option: (51) IP Address Lease Time
  Option: (1) Subnet Mask (255.255.254.0)
  Option: (3) Router
  Option: (6) Domain Name Server
  Option: (15) Domain Name
  Option: (119) Domain Search
  Option: (255) End
```




# **DHCP option 108 -> Enablement**

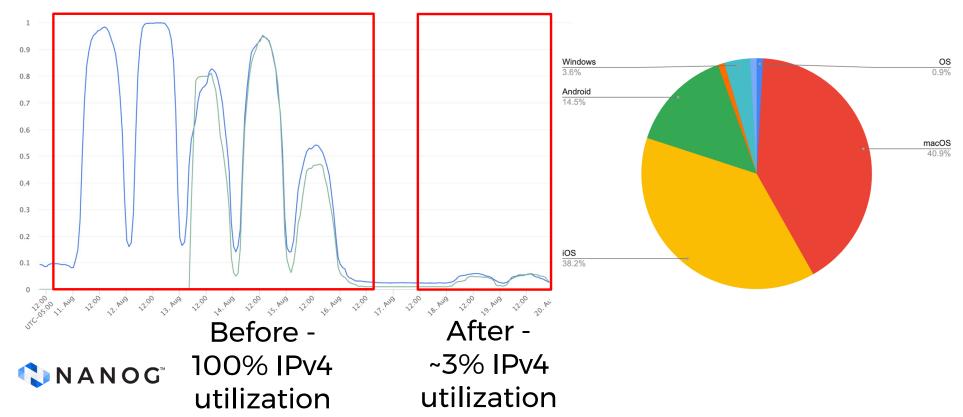

- On overutilized subnets:
  - Compared utilization before/after
  - Tested most common applications
  - Listened for people screaming
- Tested client platforms
  - MacOS 13+
  - Windows 10+
  - Linux Fedora
  - ChromeOS
- iOS 16+, Android 14+



# **DHCP option 108 in action**

Employee network






Before -100% IPv4 NANOG utilization on a /21

After - ~5% IPv4 utilization

# **DHCP option 108 in action**

Guest network



# **DHCP option 108 → Takeaways**

• Effective solution in an Apple/Android mostly environment

| platform        | Version           | Implements DHCP option 108 | Supports IPv4 literals                                   |
|-----------------|-------------------|----------------------------|----------------------------------------------------------|
| Apple macOS     | Ventura and above | Yes                        | Yes with CLAT (as long as PREF64 is learned via rfc7050) |
| Apple iOS       | 16 and above      | Yes                        | Yes with CLAT (as long as PREF64 is learned via rfc7050) |
| Google Android  | 14 and above      | Yes                        | Yes                                                      |
| Google chromeOS | 136 and under     | Yes                        | No ( <u>bug 389342045</u> )                              |
| Windows         | 10 & 11           | No                         | N/A                                                      |
| Linux Fedora    | 42 and under      | No                         | N/A                                                      |



# **DHCP option 108 → Takeaways**

- It reduces the need for IPv4
- More unknowns in guest vlans
- Easy to deploy





- 1. For both vendors that we use, it was important that:
  - APs have a factory image which would allow them to join a controller on an IPv6-only network
    - Specifically: IPv6 & DHCPv6 option 52 support out of the box
  - Promises of "we'll load the right image before the APs ship to your site" were not always kept



- 2. Most vendors treat IPv6 support as something they add support for later, and not from day 1
  - Even if they have folks contributing to the RFCs for IPv6
  - But they eventually got there after much nudging



- 3. Doing IPv6-only for clients is tricky if you don't have full control over your client base
  - Even so, we've run into weird issues & dependencies, especially when going from one major OS version to another



- 4. Issues with fragmentation over IPv6 & ACLs
  - Some fragmentation started happening once we migrated our APs to using IPv6
  - Fragments would be lost if not explicitly allowed in ACLs (especially during EAP-TLS auth, which would timeout)



```
3968 EAP
              1126 Request, TLS EAP (EAP-TLS)
3970 EAP
               102 Response, TLS EAP (EAP-TLS)
3971 EAP
              1126 Request, TLS EAP (EAP-TLS)
3972 EAP
               102 Response, TLS EAP (EAP-TLS)
3973 EAP
              1126 Request, TLS EAP (EAP-TLS)
3974 EAP
               102 Response, TLS EAP (EAP-TLS)
3975 TLSv1.2
               297 Server Hello, Certificate, Server Key Exchange, Certificate Request, Server Hello Done
3976 IPv6
              1510 IPv6 fragment (off=0 more=y ident=0x0000962b nxt=47)
3977 EAP
               148 Response, TLS EAP (EAP-TLS)
               138 Request, TLS EAP (EAP-TLS)
3980 EAP
3981 IPv6
              1510 IPv6 fragment (off=0 more=y ident=0x0000962c nxt=47)
               148 Response, TLS EAP (EAP-TLS)
3982 EAP
3983 EAP
               138 Request, TLS EAP (EAP-TLS)
3984 IPv6
              1510 IPv6 fragment (off=0 more=y ident=0x0000962d nxt=47)
3985 EAP
               148 Response, TLS EAP (EAP-TLS)
               138 Request, TLS EAP (EAP-TLS)
3990 EAP
```



- 5. DHCP option 108 may make more sense on our employee network; less so for guest
  - Due to better control over clients on the employee network



# Thank you

