
Scaling Network 
Operations with Modular 

Ansible
Joseph Nicholson

Network Operations Engineer
Global IP Network - NTT DATA



Introduction



Who is Joseph Nicholson?*

• 26 Years Experience as a Network Engineer

Network Operations Engineer

• 12 Years on the NOC team
• 7 Years on Network Operations and Network Scaling 

team focusing on Network Automation

18 Years with NTT DATA

*not an existential question



Who is NTT DATA?

• Tier 1 Transit Provider - AS2914
• Network spans 5 continents, 40+ countries, 90+ PoPs

Global IP Network (GIN) Division

• IP Transit, Virtual Link, Global Virtual Link, DDOS Protection
• 1G, 10G, 100G, 400G port speeds

Services Offered

• Routers – 250+ Backbone (BB) across 2 vendors
• DWDM – 100+ across 2 vendors (transponders and line systems)

800+ Network Elements





Disclaimer!

• If it ain’t broke…

This is the way that worked for us

• This can be improved greatly but change can be hard the deeper you 
get down the rabbit hole.

Change is hard

• I know someone is going to say my task files are too long

Task File Size



Ansible Usage

• Router processes based on existing method of procedure 
(MoP)

When do we use Ansible?

• It was easier for everyone in the beginning
• Every user has a copy in their local home directory

Why am I using via a repository and on the CLI?

• Slowly migrating older playbooks to AWX
• New playbooks live here from day 1

AWX transition started



Ansible Repository



Ansible Playbook Overview

Ran manually on CLI Ran through AWX

Router Software Upgrades Vendor TAC Collection

Update Traffic Software Package Management

Circuit Testing Maintenance Snapshots

Router Post Turnup Checks Optical Software Upgrades*



Git Repository

• Have a repository naming policy!

Operational Ansible Playbooks

Gitlab hosted repository

CI/CD Pipeline

• Secured to prevent unauthorized usage

Custom runner 



Git Repository

• main
• awx_branch
• awx_ee_build
• awx_inventory
• awx_management

Branches



Main Branch Root Folder Structure

• Playbooks run here 

Main Folder

• Main branch tasks

Focusing on…



Main Branch Sub-folder Structure
Sub-folders are named after the 
playbooks

Divided into NOS based folders

• non-router based

”Shared” tasks are used by all 
playbooks



AWX Branch Root Folder Structure
Playbooks run as roles 

• Task files are shared between 
multiple roles

Tasks Folder

• Mostly legacy in this branch
Playbook folder



AWX Branch Sub-folder Structure

Folder retains same structure

Most task files are contained 
within the roles folder



CI/CD Pipeline

• FIX ME
• Finds #FIXME tags
• Stops processing MR

• AWX Updates
• Syncs os_revision vars file to AWX

main

• ansible and python linting and syntax checks

awx_branch



CI/CD Pipeline

• Generates new images as test images
• Can promote test images to production
• Can revert old images back to production

awx_ee_build

• Builds AWX inventory files and installs them using AWX API

awx_inventory

• No pipeline

awx_management



Modular Tasks



Task Files

• Task files are collection of tasks to perform a process

What are task files?

• It's ok you can groan here

Keep them on task

• Task files for one playbook can be used by other playbooks

Task across playbooks

• Don’t need to be redirected back to the original playbook

When task files are called, they run their tasks.



Router Software Upgrade Example
Software upgrades

Software management

Maintenance Snapshots

Traffic Updates

Not a through step-by-step account of every task in the procedure























Include vs Import Tasks

• Tasks files are processed as they are 
encountered

Include – Dynamic reuse

• Tasks are pre-processed at runtime.

Import – Static reuse



Include vs Import Tasks

• Make task names unique
• Ex: vendor pre-maintenance snaps

• Can't use block or imported task names

--start-at-task task_name

• Variables used by loops must exist at the time the task file is 
processed. Include_tasks is perfect for this.

• Only apply to the tasks inside the imported_tasks file

Keywords, loops, conditionals



Lessons Learned



Code Update Management

The Good Allows updates across multiple playbooks 
at once.

The Bad
Breaking one playbook, breaks many.



CI/CD Pipeline
Forced to learn more 
advanced usage

Filter changes across branches
Prevent common oopsie!

Managing across 
branches Dev vs Prod

Managing across 
execution sources CLI vs AWX



Groundhog Day Scenario

Adopt pipeline and AWX API’s earlier

Better repository naming Say ”Operational Ansible 
Playbooks” ten times fast!!!



Thank you
Psst…This is where you ask questions.


