Scaling Network
Operations with Modular
Ansible

Joseph Nicholson
Network Operations Engineer
Global IP Network - NTT DATA

UNANOG O nTTDaTa

Sensitivity Label: General

Introduction

TUNANOG

Sensitivity Label: General

Who is Joseph Nicholson?

s Network Operations Engineer

« 26 Years Experience as a Network Engineer

= 18 Years with NTT DATA

« 12 Years on the NOC team

« 7 Years on Network Operations and Network Scaling
team focusing on Network Automation

*not an existential question

TUNANOG

Sensitivity Label: General

Who is NTT DATA?

mmmaw Global IP Network (GIN) Division

* Tier 1 Transit Provider - AS2914
* Network spans 5 continents, 40+ countries, 90+ PoPs

mmmml Services Offered

* IP Transit, Virtual Link, Global Virtual Link, DDOS Protection
* 1G, 10G, 100G, 400G port speeds

mmmw S00+ Network Elements

* Routers — 250+ Backbone (BB) across 2 vendors
« DWDM — 100+ across 2 vendors (transponders and line systems)

TUNANOG

Sensitivity Label: Genera

Tokyo

TS — = § Stockholm
Osaka 3 Seattle

Hong Kong Taipei ~Sagramentd Chicago i ~ Boston . g f
4 ‘o . Dublin lanchester Amsterdam
Bay Area/Silicon Valley Denver few York City/Newark Dusseldorf Warsaw
Bangkok Dallas Northern Virginia Area London Berlin

Los Angeles gy iy Atlanta p:mssela Frankfurt — Vienna
Houston 1S° __Luxembourg
Miami Bucharest
Marseille' 2 an

Singapore Madrid Barcelona g

Kuala Eumpyr

Sao Paulo

Sensitivity Label: General

Disclaimer!

This is the way that worked for us

o Ifit ain’t broke...

mmmm Change is hard

« This can be improved greatly but change can be hard the deeper you
get down the rabbit hole.

s 1Sk File Size

» | know someone is going to say my task files are too long

TUNANOG

Sensitivity Label: Genera

Ansible Usage

=l \\/hen do we use Ansible?

» Router processes based on existing method of procedure
(MoP)

mmm VVhy am | using via a repository and on the CLI?

* |t was easier for everyone in the beginning
» Every user has a copy in their local home directory

= AVWX transition started

» Slowly migrating older playbooks to AWX
* New playbooks live here from day 1

TUNANOG

Sensitivity Label: Genera

Ansible Repository

TUNANOG

Sensitivity Label: General

Ansible Playbook Overview

Ran manually on CLI Ran through AWX

Update Traffic Software Package Management

VUNANOG

Sensitivity Label: General

Git Repository

Operational Ansible Playbooks

* Have a repository naming policy!

mmma Gitlab hosted repository

= CIl/CD Pipeline

e Custom runner

« Secured to prevent unauthorized usage

TUNANOG

Sensitivity Label: Genera

Git Repository

= DBranches

main

awx_branch
awx_ee_build
awx_inventory
awx_management

TUNANOG

Sensitivity Label: Genera

Main Branch Root Folder Structure

|— collections

= Main Folder |— inventory
|— roles

* Playbooks run here [— scripts

|— tasks

I— vars
aa FOcusing on... |— circuit_test.py

|— circuit_testing.yaml
* Main branch tasks [— maint_snaps.yaml

|— post_turnup_check.yaml
|— router_sw_mgmt.yaml
|— router_upgrade.yaml
L— update_traffic.yaml

“UNANOG

Main Branch Sub-folder Structure

Sub-folders are named after the
I_ playbooks

Divided into NOS based folders

"Shared” tasks are used by all
playbooks

* non-router based

“UNANOG

tasks

f—— circuit_testing
f—— collection

f—— maint_snaps

f—— post_turnup

f—— router_upgrade

update_traffic

AWX Branch Root Folder Structure

mm Playbooks run as roles

|— collections
|— group_vars

|— molecule

|— playbooks

= Tasks Folder

* Task files are shared between
multiple roles

mm Playbook folder

* Mostly legacy in this branch

TUNANOG

AWX Branch Sub-folder Structure

tasks
|— collection

— maint_snaps

= Folder retains same structure

Most task files are contained
within the roles folder

TUNANOG

Cl1/CD Pipeline

e Main

* FIXME
* Finds #FIXME tags
» Stops processing MR

« AWX Updates
» Syncs os_revision vars file to AWX

mmm AWX_branch

« ansible and python linting and syntax checks

TUNANOG

Sensitivity Label: Genera

Cl1/CD Pipeline

mmm aWX_ee build

» Generates new images as test images
« Can promote test images to production
« Can revert old images back to production

mmm AWX_inventory

» Builds AWX inventory files and installs them using AWX API

awx_management

* No pipeline

TUNANOG

Sensitivity Label: Genera

Modular Tasks

TUNANOG

Sensitivity Label: General

Task Files

e What are task files?

» Task files are collection of tasks to perform a process

e Keep them on task

* It's ok you can groan here

mmmw 12SK across playbooks

» Task files for one playbook can be used by other playbooks

mmmw Vhen task files are called, they run their tasks.

* Don’t need to be redirected back to the original playbook

TUNANOG

Sensitivity Label: Genera

Router Software Upgrade Example

mmm SOftware upgrades

mam OOftware management

mmm Maintenance Snapshots

s | raffic Updates

Not a through step-by-step account of every task in the procedure

TUNANOG

Sensitivity Label: Genera

Main Playbook

router_upgrade.yaml ’
—

shared

ticket_check.yaml

logfile_create.yaml

tasks

—

— >
{vendor}_router_upgrade.yaml
N
= 4 {vendor}_maint.yaml

router_upgrade

. o

vendor

—p

maint_snaps

{vendor}/{vendor}_pre_maint.yaml

—P

sw_mgmt

{vendor}_sw_copy.yaml

{vendor}_pre_maint.yaml

J]

update_traffic

{vendor}_shutdown_traffic.yaml

{vendor}_turnup_traffic.yaml

{vendor}_post_maint.yaml

L

maint_snaps

{vendor}/{vendor}_post_maint.yaml|

ta

shared

Main Playbook
ticket_check.yaml
router_upgrade.yaml >
o I)
logfile_create.yaml

router_upgrade

e 4 {vVendor} router_upgrade.yaml

vendor

L4l {vendor} pre_ma

=

Main Playbook

router_upgrade.yaml ’
)

shared

ticket_check.yaml

logfile_create.yaml

tasks

<

e & {vendor}_pre_maint.yaml
{vendor}_router_upgrade.yaml

router_upgrade

vendor

—b

maint_snaps

{vendor}/{vendor}_pre_maint.yaml

—P

sw_mgmt

{vendor}_sw_copy.yaml

—

J]

== 24 {vendor} maint.yaml

update_traffic

{vendor}_shutdown_traffic.yaml

{vendor}_turnup_traffic.yaml

e 4l {vendor} post_maint.yaml

L]

maint_snaps

{vendor}/{vendor}_post _maint.yaml

logfile_create.yaml ‘

e & {vendor}_router_upgrade.yaml

router_upgrade

)

—p

vendor

e 4 {vendor} pre_maint.yaml
mm < {vendor} maint.yaml
{vendor} post _maint.yaml

{vendor} s

J]

{vendor}_s

{vendor}_tu

L

{vendor}/{v¢

up

tasks

maint_snaps

eammmmn &4 {vendor}/{vendor} pre_maint.yaml

sw_mgmt

emmm < {vendor} sw_copy.yaml

router_upgrade

e el update_traffic

J
I—> {vendor}_pre_maint.yaml y {vendor}_shutdown_traffic.yaml
W \ |

logfile _create.yaml ‘ sw_mgmt

emmm < {vendor} sw_copy.yami

router_upgrade

vendor

update _traffic

J
1 vendor}_pre_maint.yaml) :
2 {vendor}_router_upgrade.yaml g)pre_ y J—} {vendor}_shutdown_traffic.y
_\
mmm 4 {vendor} maint.yamil >

{vendor} post_maint.yaml 1 maint_snaps

{vendor} turnup_traffic.yam

—

{vendor}/{vendor} post_mai

_upgrade

>

—p

L—} {vendor}_maint.yaml

vendor

—P

{vendor} sw_copy.yaml

{vendor} pre_maint.yaml

J]

{vendor} post maint.yaml

update_traffic

{vendor} shutdown_traffic.yaml

{vendor} turnup _traffic.yaml

L

maint_snaps

{vendor}/{vendor} post _maint.yaml

logfile _create.yaml ‘ sw_mgmt

emmm < {vendor} sw_copy.yami

router_upgrade

vendor

update _traffic

J
1 vendor}_pre_maint.yaml) :
2 {vendor}_router_upgrade.yaml g)pre_ y J—} {vendor}_shutdown_traffic.y
_\
mmm 4 {vendor} maint.yamil >

{vendor} post_maint.yaml 1 maint_snaps

{vendor} turnup_traffic.yam

—

{vendor}/{vendor} post_mai

vendor

& {vendor}_pre_maint.yaml

_\

= 4 {vendor} maint.yaml
e 4 {vendor} post _maint.yaml

>

update_traffic

{vendor}_shutdown_traffic.yaml

{vendor} turnup_traffic.yaml

maint_snaps

{vendor}/{vendor} post maint.yaml

Main Playbook

router_upgrade.yaml ’
)

shared

ticket_check.yaml

logfile_create.yaml

tasks

<

e & {vendor}_pre_maint.yaml
{vendor}_router_upgrade.yaml

router_upgrade

vendor

—b

maint_snaps

{vendor}/{vendor}_pre_maint.yaml

—P

sw_mgmt

{vendor}_sw_copy.yaml

—

J]

== 24 {vendor} maint.yaml

update_traffic

{vendor}_shutdown_traffic.yaml

{vendor}_turnup_traffic.yaml

e 4l {vendor} post_maint.yaml

L]

maint_snaps

{vendor}/{vendor}_post _maint.yaml

Include vs Import Tasks

Include — Dynamic reuse

 Tasks files are processed as they are
encountered

Import — Static reuse

» Tasks are pre-processed at runtime.

TUNANOG

Sensitivity Label: General

Include vs Import Tasks

mmm --Start-at-task task _name

 Make task names unique
« EX: vendor pre-maintenance snaps
« Can't use block or imported task names

mmm Keywords, loops, conditionals

» Variables used by loops must exist at the time the task file is
processed. Include tasks is perfect for this.

» Only apply to the tasks inside the imported tasks file

TUNANOG

Sensitivity Label: Genera

Lessons Learned

TUNANOG

Sensitivity Label: General

Code Update Management

Allows updates across multiple playbooks
E The GOOd atonce.p PPy

Breaking one playbook, breaks many.
s TheBad

TUNANOG

Cl1/CD Pipeline

Forced to learn more
advanced usage

(0

+2+ Managing across
. branches

Tf&f Managing across
execution sources

“UNANOG

Filter changes across branches
Prevent common oopsie!

Dev vs Prod

CLI vs AWX

Groundhog Day Scenario

C‘ﬁ'; Adopt pipeline and AWX API’s earlier

Say "Operational Ansible

==¢ Better repository naming Playbooks” ten times fast!!!

TUNANOG

Thank you

Psst...This is where you ask questions.

TUNANOG

Sensitivity Label: Genera

