

Workshop

From Models to Operations: Understanding Autonomous Agents in Networking **Lab Guide**

Copyright © 2025 Cisco Systems, Inc. All rights reserved. Cisco, Cisco Systems and the Cisco Systems logo are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries. Cisco International Ltd, 9-11 New Square, Bedfont Lakes, Feltham, Middlesex, TW14 8HA, United Kingdom. Registered number: 2558939 Registered in England and Wales.

Learning Objectives

Upon completion of this lab, you will be able to:

- Create your own AI agent in the context of Network Automation.
- Extend your AI agent to add new network functions.
- Understand the difference between the two agent planning strategies: CoT and ReAct.
- Influence your agent to use a local knowledge database and a long-term memory.
- Design your agent to instantiate a single instance or multiple instances (agent swarm).

Disclaimer

This document aims to familiarize you with AI Autonomous Agents. Although the lab design and configuration examples could be used as a reference, it's not a real design, thus not all recommended features are used, or enabled optimally. For the design related questions please contact your representative at Cisco, or a Cisco partner.

Pre-requirements

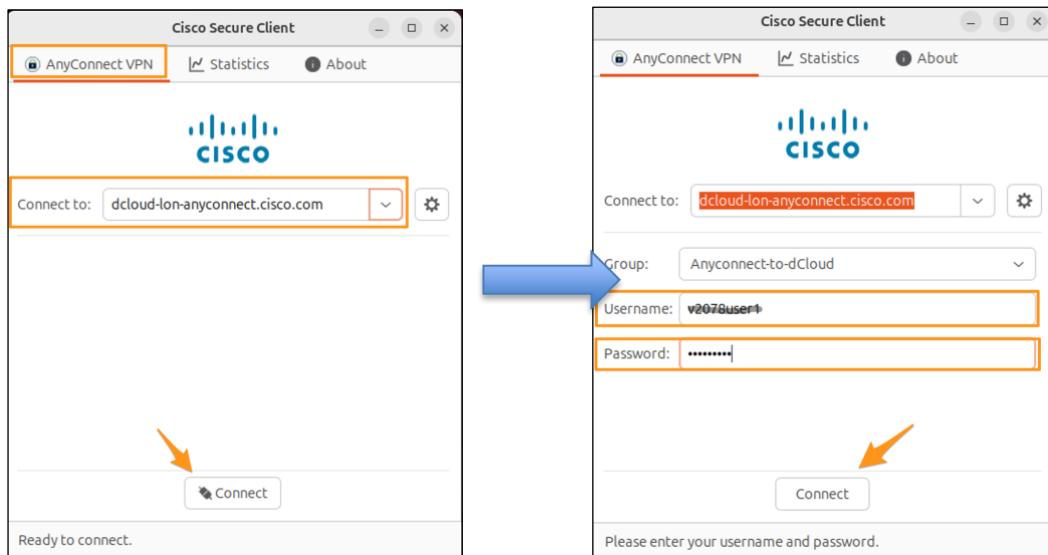
For this lab we will require a VPN connection to Cisco dCloud and, optionally, a Remote Desktop connection.

1. If Cisco Secure Client is not installed on your laptop, please download the client from the following box folder:
<https://cisco.box.com/s/zpekvtspebkoupk2z1id896ey9d0bud>
See instruction to install the Cisco Secure Client [here](#).
2. For Mac and Linux users, use the Remote Desktop application of your preference. Suggested options are:
 - Mac: Windows App
 - Linux: Remmina

Notes:

- If you prefer not to use a Remote Desktop connection, you will also have the option to open the Agent playground UI on your own laptop, once connected to the VPN.
- If you prefer to install and run the Agent playground package on your own laptop, please follow instructions in **Appendix B**.

Run your Setup (All users)


During this lab, our AI agent will require to interact with a Large Language Model (LLM) via API.

- In the setup running on Cisco dCloud, we will have pre-defined credentials to use CIRCUIT as LLM Provider.
- If you prefer to use your own LLM Provider API keys (OpenAI and OpenRouter are supported), then please see instructions in **Appendix C**.
- If you want to use OpenAI or OpenRouter as LLM Provider but you have not created your API keys, then please see instruction in **Appendix B > Task 1 and Task 2** to create your keys. Then follow instructions in **Appendix C**.

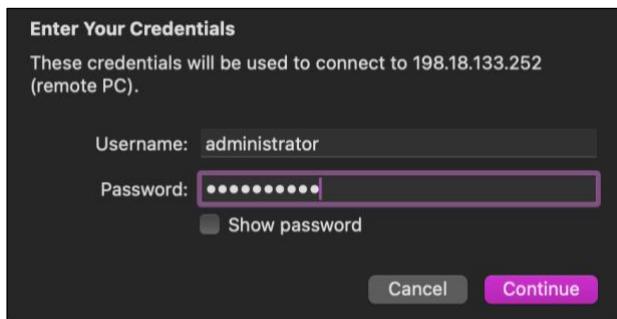
Task 1: Connect to Cisco dCloud VPN

Connect to the dCloud VPN using Cisco Secure Client:

In the Cisco Secure Client, enter the host `dcloud-lon-anyconnect.cisco.com` and select Connect. Next, enter the credentials (**Username / Password**).

Note: Credentials to access the dCloud VPN will be shared by email.

Task 2: Connect to the Remote Workstation


Skip this task if you prefer not to use a Remote Desktop connection and want to open the Agent playground UI on your own laptop.

Use your preferred Remote Desktop connection application to connect to the remote workstation in dCloud.

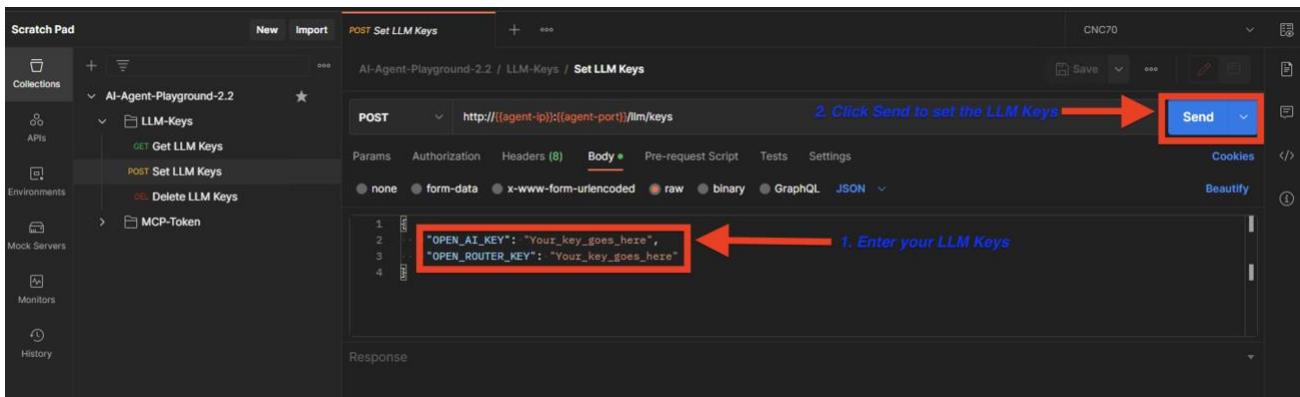
Use the following connection details:

- IP: 198.18.133.252
- User: administrator
- Password: C1sco12345

Example using Window App for Mac:

Task 3: Set your LLM Provider API Keys via REST API

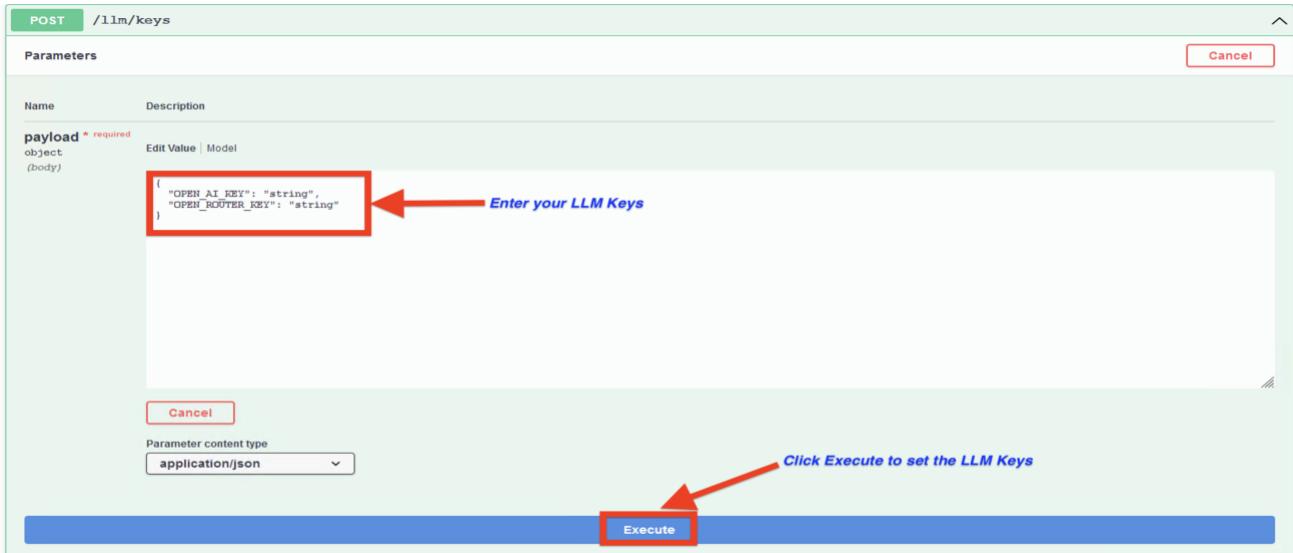
To accomplish this task, Students have the option to set the LLM Keys (*bring your LLM Keys*) using Postman **or** WebUI.


Note: Only OpenAI and OpenRouter are supported as LLM providers to configure the API keys via REST API.

Step1: Set LLM keys via Postman

On your desktop, please find the postman App.

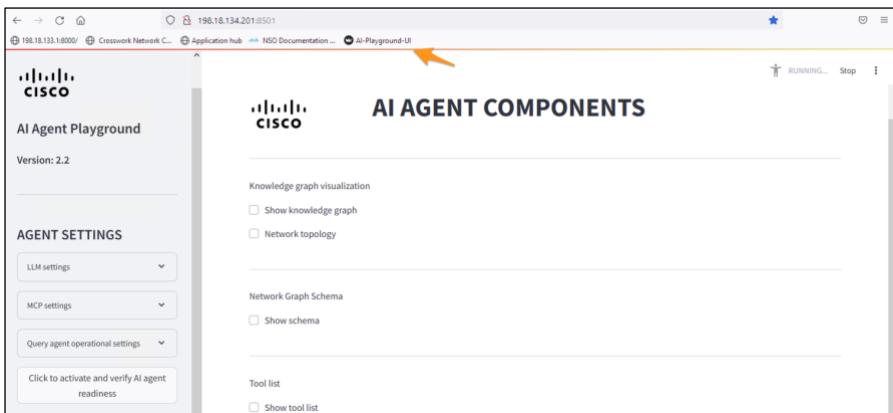
Use the **Set LLM Keys** request to set one or both API keys with your own keys. Use the **Body** payload to set the API key information, and then select **Send**. See screenshot below for reference:



Step 2: Set LLM Keys using WebUI

Please use the IP Address '<http://198.18.134.201:4109/>' to reach the application.

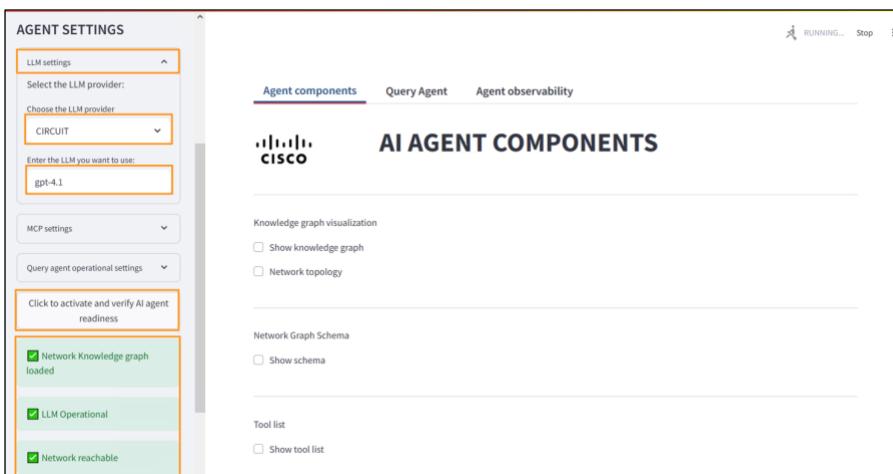
Enter your LLM Keys and Hit execute to set the LLM Keys.


Task4: Get familiar with the AI Agent playground UI

Step 1: Access the web UI

If you are not using a Remote Desktop connection, then just open a web-browser (Chrome or Mozilla are recommended) and go to the following URL: <http://198.18.134.201:8501/>

From the remote workstation, launch Mozilla and the Agent UI should be automatically opened. There is also a bookmark “AI-Playground-UI” that you can select:

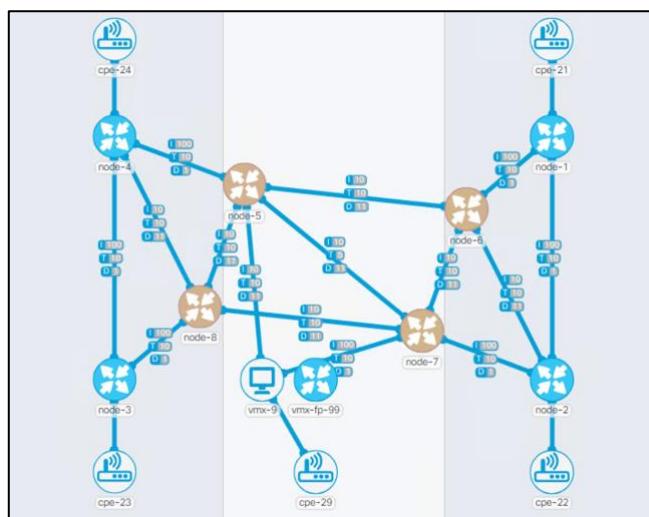


Step 2: Verify the AI agent readiness

In the **Agent Settings** to the left-hand side, select **LLM settings > LLM provider** (use CIRCUIT by default or use your preferred LLM provider – see instructions in [Appendix C](#)). Then enter the **LLM** you will use (e.g. gpt-4.1) and **press Enter**. Keep all other settings at their default values and select **Click to activate and verify AI agent readiness**. You should see three validations in green color, meaning that your AI agent is ready to be used.

See picture below for reference:

Note: If the last check is in red color (failed state) then it means the network topology is unreachable. Please raise your hand to call one of the proctors.


Up to this point you have successfully completed the Quick Start Lab Guide for this workshop. **Next tasks and steps will be provided by the presenter. Enjoy your lab!**

Appendix A – Network Topology

The following topology will be used during the lab.

- The routers are configured to mimic a core-network, with P and PE routers. node-1, node-2, node-3 and node-4 are PEs and node-5, node-6, node-7 and node-8 are P routers. Node-9 is a hybrid P/PE. They are interconnected with point2point links and are running ISIS as their Interior Gateway Protocol (IGP). They are also peering BGP Link-state (BGP-LS) with the routers pce-11 and pce-12, which are the SR-PCEs in the network. They are the Path Computation Elements (PCEs) which handle path computation of delegated LSPs and learn topology via BGP Link State. All other nodes are Path Computation Clients (PCCs).
- The SR-PCE is deployed off-path (i.e. external to the ISIS domain), as it is not intended to forward any traffic. Its role is only to be the SR-PCE, to build link-state topology, and act as a route-reflector for the network.

Equipment details

Name	Description	Host Name (FQDN)	IP Address	Username	Password
node-1 - node-8	Cisco IOS XRv	name.demo.dcloud.cisco.com	198.18.1.41-48, 198.19.1.1-8	cisco	cisco
pce-11 – pce-12	Cisco SR-PCE, RR on IOS XR	name.demo.dcloud.cisco.com	198.18.1.51-52, 198.19.1.11-12	cisco	cisco
cpe-11-14	Cisco IOSv, telnet	name.demo.dcloud.cisco.com	198.18.1.61-64, 198.19.1.21-64	cisco	cisco

Appendix B – Set your LLM Provider API Keys via REST API

Use Postman

In the remote workstation, from the Windows task bar launch Postman. The collection “**AI-Agent-Playground-2.2**” is pre-loaded. Open the collection and the **Keys** folder. You will see three API requests to perform the following operations:

- Get LLM Keys
- Set LLM Keys
- Delete LLM Keys

The screenshot shows the Postman interface in dark mode. The left sidebar has sections for Collections, APIs, Environments, Mock Servers, Monitors, and History. The 'Collections' section shows 'AI-Agent-Playground-2.1' expanded, with 'Keys' selected. The main area is titled 'Scratch Pad' and contains the 'Get LLM Keys' request. The 'Get LLM Keys' request is highlighted with an orange box. The interface includes a 'Get started' sidebar with links to 'Create a request', 'Create a collection', 'Create an API', 'Create an environment', and 'View More'.

Use the **Get LLM Keys** request to validate if the API keys are in “Configured” or “Not Configured” state. In the following example, none of the API keys are configured:

The screenshot shows the Postman interface in dark mode. The left sidebar has sections for Collections, APIs, Environments, Mock Servers, Monitors, and History. The 'Collections' section shows 'AI-Agent-Playground-2.1' expanded, with 'Keys' selected. The main area shows the 'Get LLM Keys' request. The 'Send' button is highlighted with an orange box. The response body is displayed in the 'Body' tab, showing the following JSON:

```

1  [{"key": "OPEN_AI_KEY", "value": "Not Configured", "description": "Description"}, {"key": "OPEN_ROUTER_KEY", "value": "Not Configured", "description": "Description"}]

```

Use the **Set LLM Keys** request to set one or both API keys with your own keys. Use the **Body** payload to set the API key information, and then select **Send**. See screenshot below for reference:

POST Set LLM Keys

Body

```

1
2 ...
3 ...
4
  "OPEN_AI_KEY": "Your_key_goes_here",
  "OPEN_ROUTER_KEY": "Your_key_goes_here"

```

Status: 201 CREATED

Body

1 "Successfully added LLM Keys"

Use the **Delete LLM Keys** request to delete one or both API keys. A **KEY** parameter can be passed, and accepted values are: ALL (default), OPEN_AI_KEY or OPEN_ROUTER_KEY. See screenshot below for reference:

DELETE

Params

KEY	VALUE	DESCRIPTION
<input checked="" type="checkbox"/> KEY	ALL	Value could be ALL, OPEN_AI_KEY or OPEN_ROUTER...

Status: 204 NO CONTENT

Note: even though values are not deleted with the Delete request, this information lives in memory only and will be automatically removed once the agent playground is stopped, or the dCloud session ends.

