

# Financial Analysis for Technical Professionals

02-FEB-2026

Barrie Jones Cook

# Caveats

- I am not a lawyer, accounting, or financial professional
- None of this constitutes legal, accounting, or financial (or tax!) advice
- Please seek professional help for anything formal or with legal implications, and to sanity-check any LLM output you use
- These are just a fellow engineer's experiences learning about financial considerations, and I hope something in here helps with analyzing risk or decisions on spending

# Why Should Engineers Care about Finance?

Or, Storytime

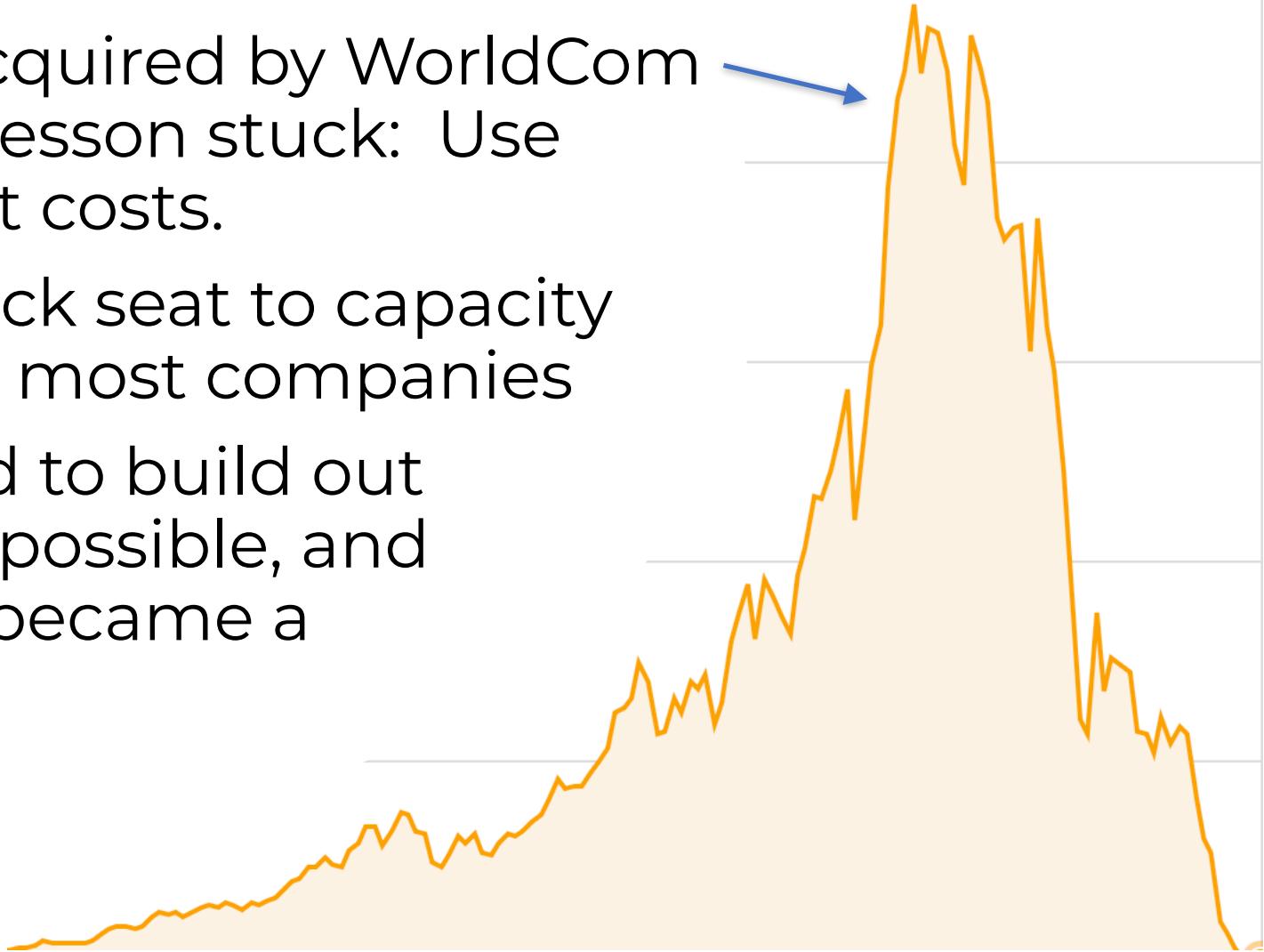
# Long, long ago in an office tower far, far away...



- Most telecom traffic was voice, and transport costs were astronomical
- WilTel had saved big by stuffing fiber down old petroleum pipelines, but . . .
- The last mile called for expensive DS-1 or DS-3 leases that took weeks or even months to provision to trunk switches.
- Order too soon, you pay big bucks for idle circuits. Wait too long, you block voice calls and callers get a fast busy.

# Long, long ago in an office tower far, far away . . .




The first operators: yet another job lost to automation

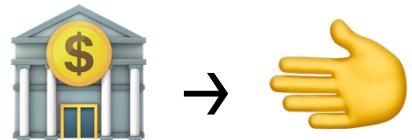
An entire Traffic Engineering department was formed, using SQL reports and spreadsheets to, among other things:

- Predict peak lines required
- Compare provider costs, and
- Identify T-3 channels that could be groomed to use each to its fullest capacity

# Long, long ago in an office tower far, far away...

- Although WilTel was acquired by WorldCom and its fraudsters, the lesson stuck: Use data and analysis to cut costs.
- For a while, it took a back seat to capacity and revenue growth at most companies
- Engineering teams had to build out networks as quickly as possible, and bandwidth eventually became a commodity

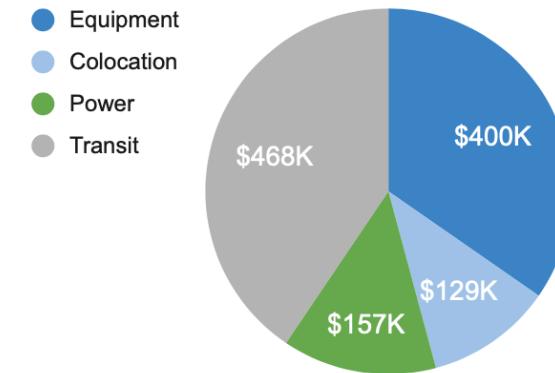



# The Cycle of Financial Thinking

- Financial concerns come back again from time to time because:
  - Markets correct, easy money runs out
  - Everything costs money - rack space, people, equipment, transit, initial setup for peering
  - Securing funds for new ventures draws scrutiny again (for a while)
- You could say all engineering decisions are financial

# Types of Financial Decisions

## External:


- Debt or investment for start-ups or acquisitions



- Not exhaustive, of course. And is the distinction all that important?

## Internal:

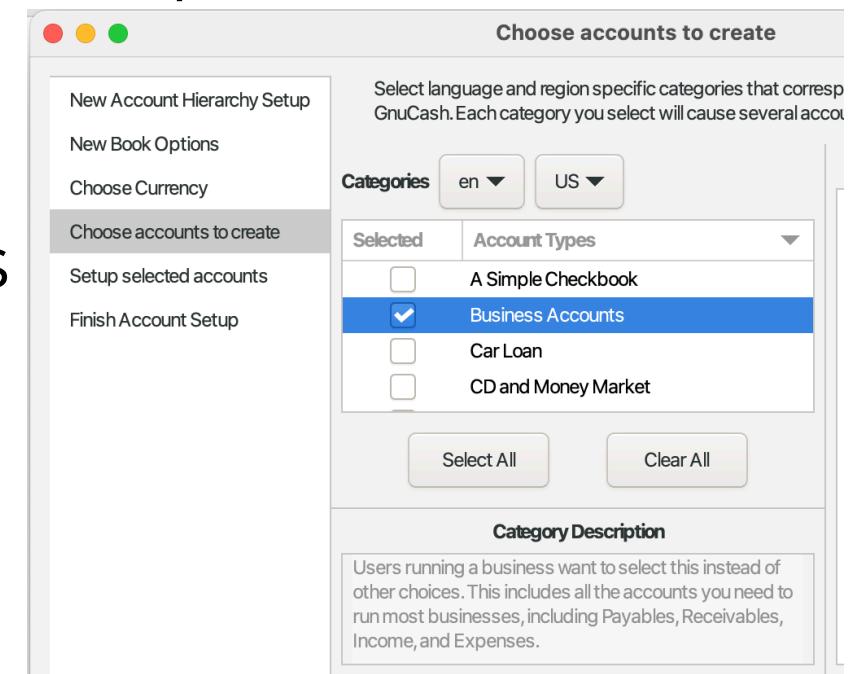
- Budgeting, management buy-in for expenditures



# Types of Financial Decisions

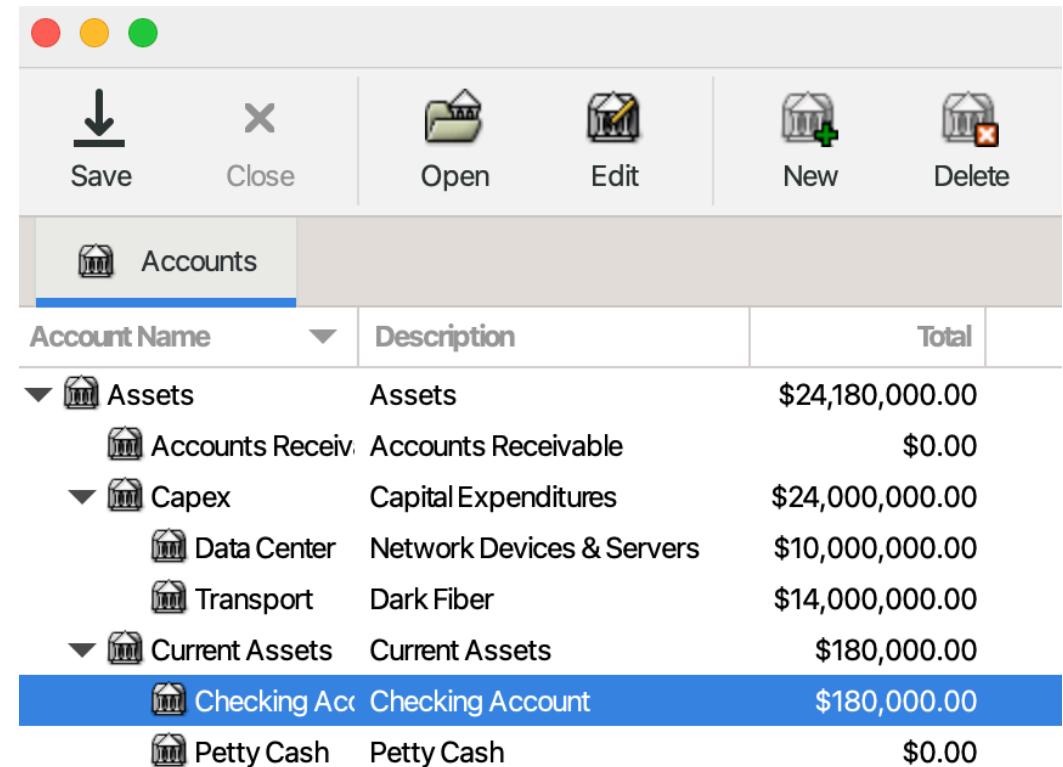
- Really the same considerations, after all:
  - ➔ Someone has to allocate a finite resource (money, debt, shares, rack space, work hours)
  - ➔ They need it to return a benefit (profit, cost savings)
  - ➔ There's always a risk it won't, so how to assure them?

# Personal Considerations


- Managing your own personal finances
- Positioning for your next career move
- Not the focus of this, but lots of good engineering-to-management resources out there, such as:
  - Hazel Weakly episode on Packet Pushers (D2C241, 4/24/2024)
  - *An Elegant Puzzle: Systems of Engineering Management* by Will Larson (for large companies)

# Where to begin?

# Dive In


- Like any new technology or discipline, it starts with thinking through the details somewhere
- It can help, though, to have a roadmap and understand some basic concepts first

One way to get going is to install GnuCash\*, and check only Business Accounts, adding any additional accounts needed for your company's budget



# GnuCash Example

- Great for understanding double-entry bookkeeping and income statements
  - ➔ Add specific assets, expenses and liabilities
  - ➔ Look up unfamiliar terms
  - ➔ Generate reports
- It'll only get you so far in financial modeling, though



| Account Name        | Description               | Total           |
|---------------------|---------------------------|-----------------|
| Assets              | Assets                    | \$24,180,000.00 |
| Accounts Receivable | Accounts Receivable       | \$0.00          |
| Capex               | Capital Expenditures      | \$24,000,000.00 |
| Data Center         | Network Devices & Servers | \$10,000,000.00 |
| Transport           | Dark Fiber                | \$14,000,000.00 |
| Current Assets      | Current Assets            | \$180,000.00    |
| Checking Account    | Checking Account          | \$180,000.00    |
| Petty Cash          | Petty Cash                | \$0.00          |

# Detailed Modeling with Sheets

D3 ▼ |  $fx =C3*(1+$B$11)$

|    | A                  | B       | C       | D       | E       | F       | M       | N                      |
|----|--------------------|---------|---------|---------|---------|---------|---------|------------------------|
| 1  |                    |         |         |         |         |         |         |                        |
| 2  | Month              | 1       | 2       | 3       | 4       | 5       | 12      | Year end Total<br>2026 |
| 3  | New York           | \$5,000 | \$5,100 | \$5,202 | \$5,306 | \$5,412 | \$6,217 | \$67,060               |
| 4  | San Francisco      |         | \$5,000 | \$5,100 | \$5,202 | \$5,306 | \$6,095 | \$60,844               |
| 5  | Dallas             |         |         | \$5,000 | \$5,100 | \$5,202 | \$5,975 | \$54,749               |
| 6  | Chicago            |         |         |         | \$5,000 | \$5,100 | \$5,858 | \$48,773               |
| 7  |                    |         |         |         |         |         |         | \$233,452              |
| 8  |                    |         |         |         |         |         |         |                        |
| 9  | <b>Assumptions</b> |         |         |         |         |         |         |                        |
| 10 | Market Entry       | \$5,000 |         |         |         |         |         |                        |
| 11 | Growth Rate/mo     | 2.00%   |         |         |         |         |         |                        |
| 12 |                    |         |         |         |         |         |         |                        |

- More flexible
- Assumptions each get a cell, in case they change
- Reference cells rather than constants in formulas

# Detailed Modeling with Sheets

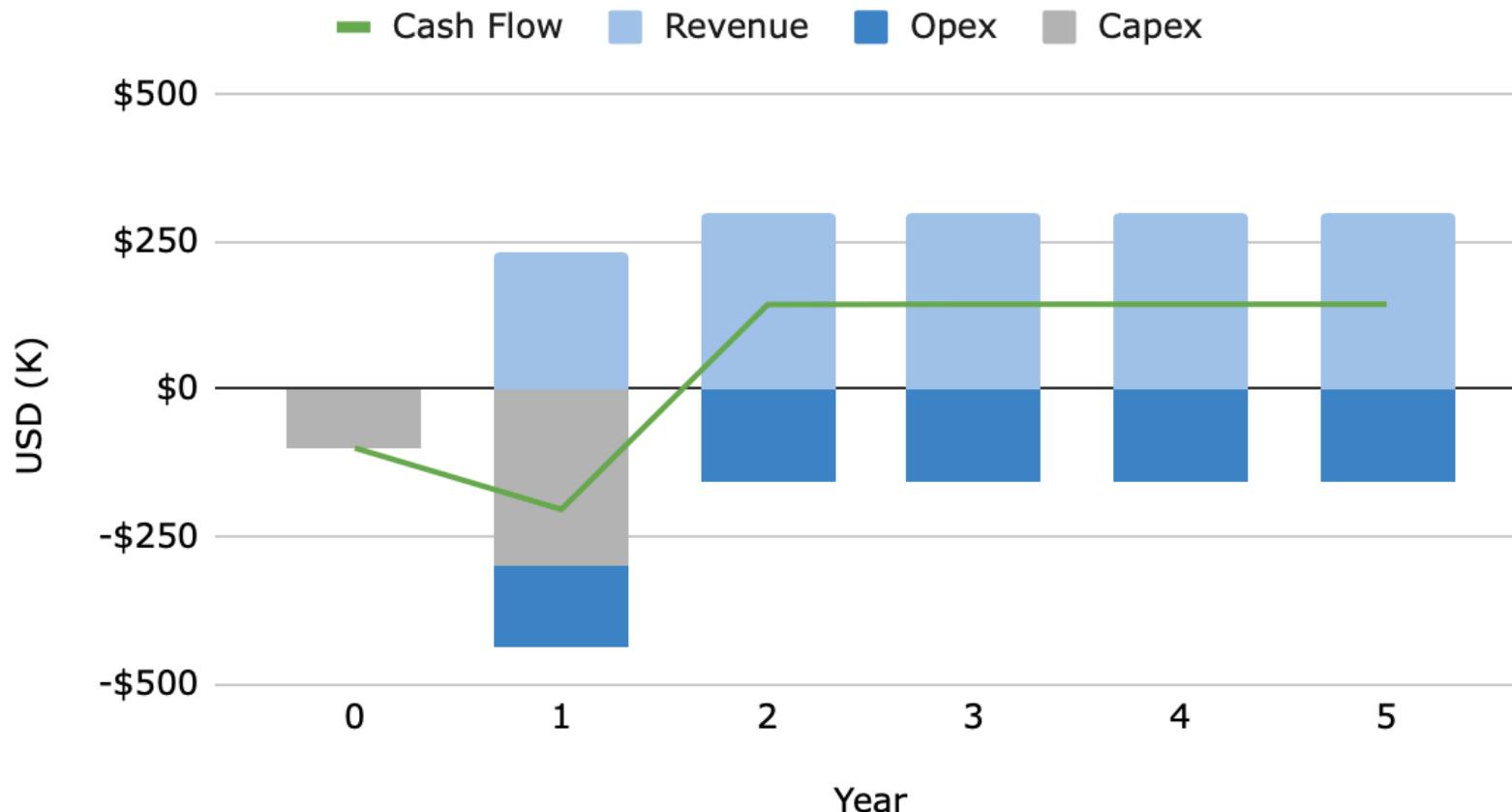
D3 ▾ | fx =if(LT(D\$2,\$B\$12),\$B9\*D\$2,\$B9\*\$B\$12)

|    | A              | B          | C          | D          | M           | N              |
|----|----------------|------------|------------|------------|-------------|----------------|
| 1  |                |            |            |            |             |                |
| 2  | Month          | 1          | 2          | 3          | 12          | Year end Total |
| 3  | Colocation     | \$550.00   | \$1,100.00 | \$1,650.00 | \$2,200.00  | \$23,100       |
| 4  | Power          | \$672.00   | \$1,344.00 | \$2,016.00 | \$2,688.00  | \$28,224       |
| 5  | Transit        | \$3,000.00 | \$6,000.00 | \$9,000.00 | \$12,000.00 | \$126,000      |
| 6  |                |            |            |            |             | \$179,350      |
| 7  |                |            |            |            |             |                |
| 8  | Assumptions    |            |            |            |             |                |
| 9  | Colo per rack  | \$550      |            |            |             |                |
| 10 | Power per rack | \$672      |            |            |             |                |
| 11 | Transit per DC | \$3,000    |            |            |             |                |
| 12 | Ramp up months | 4          |            |            |             |                |
| 13 |                |            |            |            |             |                |

- More flexible
- Assumptions each get a cell, in case they change
- Reference cells rather than constants in formulas

# Detailed Modeling with Sheets

- Create multiple tabs to manage complexity\*
- Create summary tab for analysis and charts
- Summarize years vertically, if possible


D4 ▾ fx = 'Monthly Sales' !N20

|    | A                  | B          | C          | D         | E          |
|----|--------------------|------------|------------|-----------|------------|
| 1  | Year               | Capex      | Opex       | Revenue   | Cash Flow  |
| 2  | 0                  | -\$100,000 |            |           | -\$100,000 |
| 3  | 1                  | -\$300,000 | -\$137,350 | \$233,452 | -\$203,898 |
| 4  | 2                  |            | -\$156,683 | \$299,952 | \$143,269  |
| 5  | 3                  |            | -\$156,683 | \$300,438 | \$143,755  |
| 6  | 4                  |            | -\$156,683 | \$300,438 | \$143,755  |
| 7  | 5                  |            | -\$156,683 | \$300,438 | \$143,755  |
| 8  |                    |            |            |           |            |
| 9  | <b>Assumptions</b> |            |            |           |            |
| 10 | Capex Per DC       | \$100,000  |            | NPV       | \$151,654  |
| 11 | Discount Rate      | 8%         |            | IRR       | 26%        |
| 12 |                    |            |            |           |            |

\*Debt, taxes & other expenses not included in this simple example. Be sure to think it through for your case!

# Detailed Modeling with Sheets

Capex, Opex, Revenue and Cash Flow



# Analyzing Risk

# Risk Identification

- Think of possibilities for negative returns, if assumptions are off or conditions change
- Even if the model is good, there could be a better way to invest the capital or allocate the budget. Why this?
- Learn some key metrics decision-makers often use to determine the potential of an investment
- Use Sensitivity Analysis to help evaluate the quality of the model or give conditions under which an investment is still a good use of capital

# Commonly used metrics

- NPV - Net Present Value
  - The value of the investment in today's dollars, given an alternative investment at a certain interest rate (the discount rate)
  - Decide on yearly vs. monthly cash flows (divide rate by 12)
- IRR - Internal Rate of Return (a.k.a. ROI, essentially)
  - What the discount rate must be for NPV to be 0

# Others to think about

- Net income - more detail than in our simple cash flow example; includes non-cash expenses as well as cash
- DSCR - Debt Service Coverage Ratio
- Consider other metrics your audience may look for in addition to or in lieu of these others
  - ➡ Talk to the finance or accounting department, potential investors, startup incubators, etc.

# Net Present Value

## Canonical Definition:

- The sum of all discounted cash flows, including the up-front investment (year 0, negative cash flow)
- $r$  = the discount rate
- Because the exponent is 0,  $CF_0$  is divided by 1, so not discounted

$$\sum_{t=0}^N \frac{CF_t}{(1+r)^t}$$

# Net Present Value

## De Facto Definition:

- To simplify this, you can start at Year 1, and add the initial investment (negative) separately
- It seems the part in parentheses is what Excel went with way back when, and all others followed suit.

$$\left( \sum_{t=1}^N \frac{CF_t}{(1+r)^t} \right) + CF_0$$

# NPV Formula Caveat

- So, be careful
- Add the first negative cash flow separately from the Year 1-5 formula calculation as shown

E10 ▾ | fx =npv(B11, E3:E7)+E2

|    | A             | B          | C          | D         | E          |
|----|---------------|------------|------------|-----------|------------|
| 1  | Year          | Capex      | Opex       | Revenue   | Cash Flow  |
| 2  | 0             | -\$100,000 |            |           | -\$100,000 |
| 3  | 1             | -\$300,000 | -\$137,350 | \$233,452 | -\$203,898 |
| 4  | 2             |            | -\$156,683 | \$299,952 | \$143,269  |
| 5  | 3             |            | -\$156,683 | \$300,438 | \$143,755  |
| 6  | 4             |            | -\$156,683 | \$300,438 | \$143,755  |
| 7  | 5             |            | -\$156,683 | \$300,438 | \$143,755  |
| 8  |               |            |            |           |            |
| 9  | Assumptions   |            |            |           |            |
| 10 | Capex Per DC  | \$100,000  |            | Results   |            |
| 11 | Discount Rate | 8%         |            | NPV       | \$151,654  |
| 12 |               |            |            | IRR       | 26%        |

# NPV Formula Caveat

## Try it yourself

- If you are curious, create a series of discounted cash flows and sum that
- Compare to the sheet NPV if all 6 cash flows are included in the range

|    | F2   | ▼   | fx            | =E2/(1+\$F\$12)^A2 |
|----|------|-----|---------------|--------------------|
| 1  | A    | ◀ ▶ | E             | F                  |
| 2  | Year |     | Cash Flow     | Discounted CF      |
| 3  | 0    |     | -\$100,000    | -\$100,000         |
| 4  | 1    |     | -\$203,898    | -\$188,795         |
| 5  | 2    |     | \$143,269     | \$122,830          |
| 6  | 3    |     | \$143,755     | \$114,117          |
| 7  | 4    |     | \$143,755     | \$105,664          |
| 8  | 5    |     | \$143,755     | \$97,837           |
|    |      |     |               | \$151,654          |
| 10 |      |     | NPV (sheet)   | \$140,420          |
| 11 |      |     |               |                    |
| 12 |      |     | Discount Rate | 8%                 |
| 13 |      |     |               |                    |

# NPV Formula Caveat

## Try it yourself

- If you are curious, create a series of discounted cash flows and sum that
- Compare to the sheet NPV if all 6 cash flows are included in the range

|    |      | F10 | ▼             | fx =npv(F12,E2:E7) |
|----|------|-----|---------------|--------------------|
|    | A    | ◀ ▶ | E             | F                  |
| 1  | Year |     | Cash Flow     | Discounted CF      |
| 2  | 0    |     | -\$100,000    | -\$100,000         |
| 3  | 1    |     | -\$203,898    | -\$188,795         |
| 4  | 2    |     | \$143,269     | \$122,830          |
| 5  | 3    |     | \$143,755     | \$114,117          |
| 6  | 4    |     | \$143,755     | \$105,664          |
| 7  | 5    |     | \$143,755     | \$97,837           |
| 8  |      |     |               | \$151,654          |
| 9  |      |     |               |                    |
| 10 |      |     | NPV (sheet)   | \$140,420          |
| 11 |      |     |               |                    |
| 12 |      |     | Discount Rate | 8%                 |
| 13 |      |     |               |                    |

# IRR

## Year 0 is included

- This is basically the NPV function set to 0, and sheets calculate this one correctly for some reason
- It iterates through different discount rates, starting with a “guess” rate specified in the formula (default is 10%), until NPV approximates 0
- The point is to find out if this project’s rate of return (discount rate) is better than some alternative investment for the capital

# IRR

- Numpy\_financial has an IRR function if you don't want to demonstrate it iteratively

```
% python irr.py
The IRR is: 0.2648
```

```
import numpy_financial as npf

# Define the cash flows
cash_flows = [-100000, -203898, 143269,
               143755, 143755, 143755]

# Calculate the IRR
irr_value = npf.irr(cash_flows)

# Print the result
print(f"The IRR is: {irr_value:.4f}")
```

# IRR

- We get the same value as Sheets IRR
- Check it: input this as rate for NPV (B11)— it's close enough to 0 (E10)

|    | A             | B          | C          | D         | E          |
|----|---------------|------------|------------|-----------|------------|
| 1  | Year          | Capex      | Opex       | Revenue   | Cash Flow  |
| 2  | 0             | -\$100,000 |            |           | -\$100,000 |
| 3  | 1             | -\$300,000 | -\$137,350 | \$233,452 | -\$203,898 |
| 4  | 2             |            | -\$156,683 | \$299,952 | \$143,269  |
| 5  | 3             |            | -\$156,683 | \$300,438 | \$143,755  |
| 6  | 4             |            | -\$156,683 | \$300,438 | \$143,755  |
| 7  | 5             |            | -\$156,683 | \$300,438 | \$143,755  |
| 8  |               |            |            |           |            |
| 9  | Assumptions   |            |            |           |            |
| 10 | Capex Per DC  | \$100,000  |            |           |            |
| 11 | Discount Rate | 26.48%     |            |           |            |
| 12 | Results       |            |            |           |            |
|    | NPV           | -\$15      |            |           |            |
|    | IRR           | 26.48%     |            |           |            |

# Sensitivity Analysis

- A couple of common ways to determine the impact of changes in model inputs:
  - Tornado Chart
  - Monte Carlo Simulation / distribution
- These are not comprehensive, nor foolproof. But they can help build a business case and show thoughtful consideration of risk

# Tornado Chart

- Calculate the impact on a key metric by changing one variable at a time (in this example, we track NPV)
- Here we'll use a 50% variation for each of Capex, Opex, and Revenue, then calculate NPV to get low and high values
- Horizontal bars are shown in descending order of impact, so it looks vaguely like a tornado
- This example uses python and matplotlib, because sheets don't usually have a good way to chart it

# Tornado Chart

F16 ▾ | fx =E16\*(1-\$C\$11)

|      | A              | B          | C          | D             | E          | F         | G                | H         | I         | J         |
|------|----------------|------------|------------|---------------|------------|-----------|------------------|-----------|-----------|-----------|
| ▼ 11 | Flat           | Variation  | 50%        |               |            |           |                  |           |           |           |
| 12   |                |            |            |               |            |           |                  |           |           |           |
| 13   | <u>Δ Capex</u> |            |            | <u>Δ Opex</u> |            |           | <u>Δ Revenue</u> |           |           |           |
| 14   | Year           | Nominal    | Low        | High          | Nominal    | Low       | High             | Nominal   | Low       | High      |
| 15   | 0              | -\$100,000 | -\$50,000  | -\$150,000    |            |           |                  |           |           |           |
| 16   | 1              | -\$300,000 | -\$150,000 | -\$450,000    | -\$137,350 | -\$68,675 | -\$206,025       | \$233,452 | \$116,726 | \$350,178 |
| 17   | 2              |            |            |               | -\$156,683 | -\$78,342 | -\$235,025       | \$299,952 | \$149,976 | \$449,927 |
| 18   | 3              |            |            |               | -\$156,683 | -\$78,342 | -\$235,025       | \$300,438 | \$150,219 | \$450,657 |
| 19   | 4              |            |            |               | -\$156,683 | -\$78,342 | -\$235,025       | \$300,438 | \$150,219 | \$450,657 |
| 20   | 5              |            |            |               | -\$156,683 | -\$78,342 | -\$235,025       | \$300,438 | \$150,219 | \$450,657 |

- First calculate low & high versions of inputs

# Tornado Chart

|   |      | C9                 |           |            | fx =C3+npv('Yearly Summary'!\$B\$11, C4:C8) |            |            |                      |            |            |
|---|------|--------------------|-----------|------------|---------------------------------------------|------------|------------|----------------------|------------|------------|
|   | A    | B                  | C         | D          | E                                           | F          | G          | H                    | I          | J          |
| 1 |      | <b>CF, Δ Capex</b> |           |            | <b>CF, Δ Opex</b>                           |            |            | <b>CF, Δ Revenue</b> |            |            |
| 2 | Year | Nominal            | Low       | High       | Nominal                                     | Low        | High       | Nominal              | Low        | High       |
| 3 | 0    | -\$100,000         | -\$50,000 | -\$150,000 | -\$100,000                                  | -\$100,000 | -\$100,000 | -\$100,000           | -\$100,000 | -\$100,000 |
| 4 | 1    | -\$203,898         | -\$53,898 | -\$353,898 | -\$203,898                                  | -\$135,223 | -\$272,573 | -\$203,898           | -\$320,624 | -\$87,172  |
| 5 | 2    | \$143,269          | \$143,269 | \$143,269  | \$143,269                                   | \$221,610  | \$64,927   | \$143,269            | -\$6,707   | \$293,244  |
| 6 | 3    | \$143,755          | \$143,755 | \$143,755  | \$143,755                                   | \$222,096  | \$65,413   | \$143,755            | -\$6,464   | \$293,974  |
| 7 | 4    | \$143,755          | \$143,755 | \$143,755  | \$143,755                                   | \$222,096  | \$65,413   | \$143,755            | -\$6,464   | \$293,974  |
| 8 | 5    | \$143,755          | \$143,755 | \$143,755  | \$143,755                                   | \$222,096  | \$65,413   | \$143,755            | -\$6,464   | \$293,974  |
| 9 | NPV  | \$151,654          | \$340,542 | -\$37,235  | \$151,654                                   | \$455,498  | -\$152,191 | \$151,654            | -\$416,907 | \$720,214  |

- Create low/high cash flows for each year, then calculate NPV for each set of cash flows

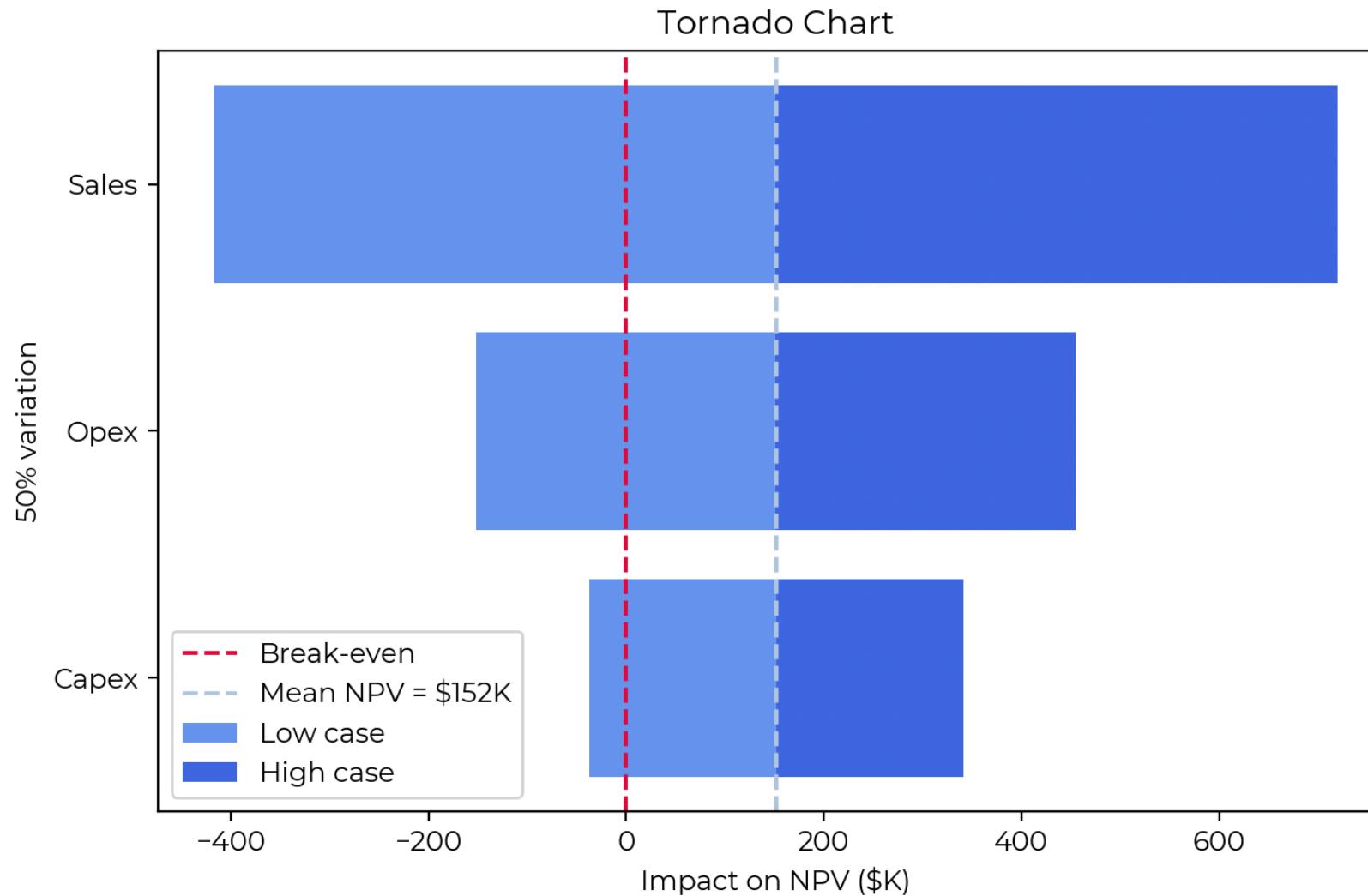
# Tornado Chart

```
import matplotlib.pyplot as plt
import numpy as np

# Variables and their low/high impact values
variables = ["Capex", "Opex", "Sales"]
low_values = [-37, -152, -417]
high_values = [341, 455, 720]

# Calculate total impact
impact = np.abs(np.array(high_values) - np.array(low_values))
```

- Create a list for low and high results, then calculate impact


# Tornado Chart

```
# Sort by impact
sorted_impact = np.argsort(impact)

variables = [variables[i] for i in sorted_impact]
low_values = [low_values[i] for i in sorted_impact]
high_values = [high_values[i] for i in sorted_impact]
mean_npv = (np.array(high_values) + np.array(low_values))/2
low_delta = low_values - mean_npv
high_delta = high_values - mean_npv
```

- Reverse sort and plot (not shown), tweaking captions, fonts and colors as needed.

# Tornado Chart



# Monte Carlo Simulation

- Model many potential cash flow outcomes, assuming they are normally distributed (i.e. bell curve)
- It's as if we were rolling the dice in Casino Royale, hence the name
- We then calculate NPV from this and see how likely a positive value is, which indicates a good investment
- This example also uses python and matplotlib, for similar reasons

# Monte Carlo Simulation

```
import matplotlib.font_manager as fm
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl

fm.fontManager.addfont("/Library/Fonts/Montserrat-Regular.ttf")
mpl.rcParams['font.family'] = 'Montserrat'

# Example cash-flow means:

cf_means = np.array([-100000, -203898, 143269, 143755, 143755,
143755])
```

- First list the cash flows from our model
- Also: font management in case it's of interest

# Monte Carlo Simulation

```
# Example with same standard deviation applied to all CFs:  
stddev = 0.40 # 40% standard deviation  
  
cf_stds = np.abs(cf_means) * stddev  
  
discount_rate = 0.08 # 8%  
num_samples = 10000 # number of Monte Carlo runs
```

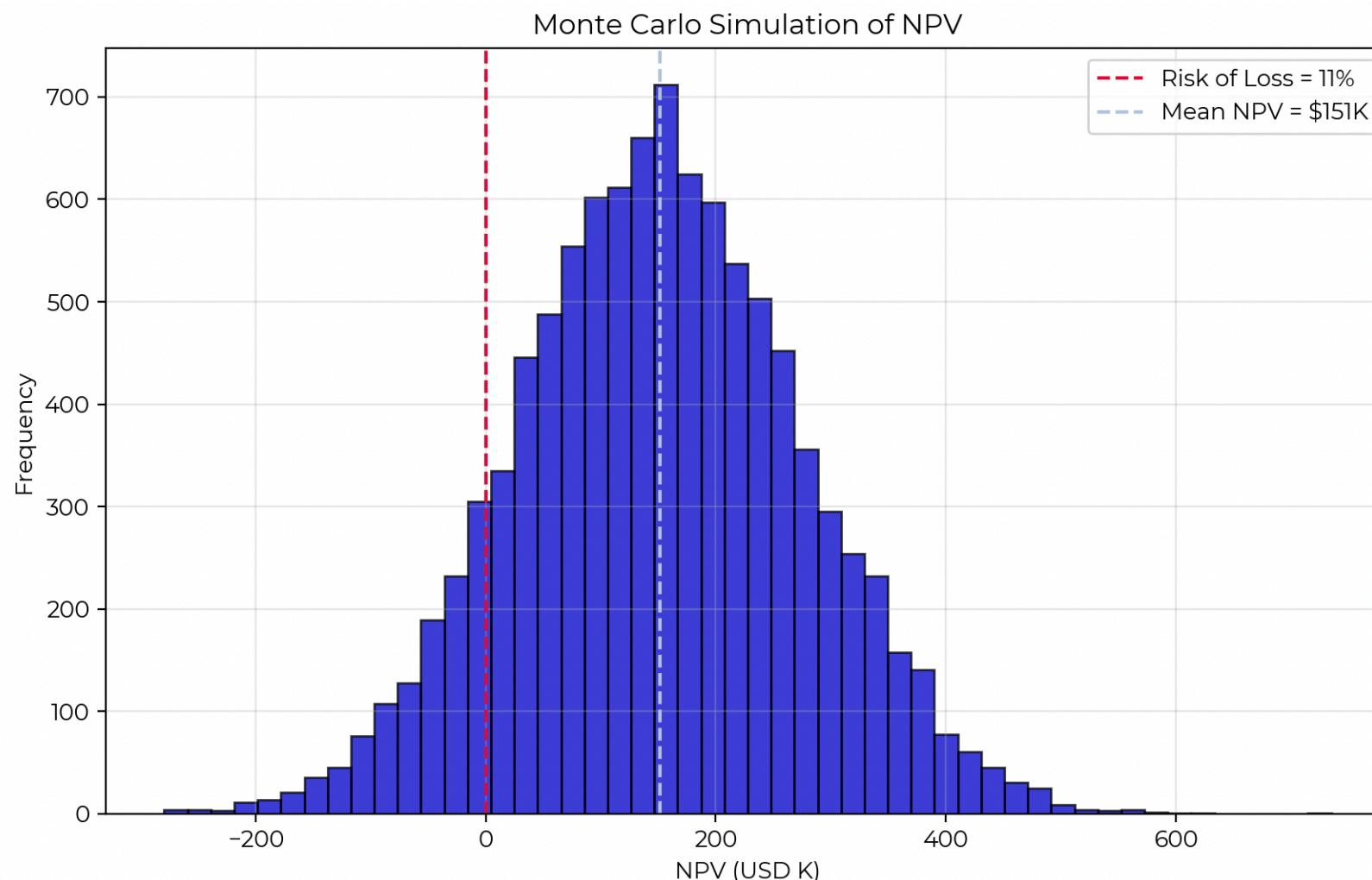
- Calculate the array of standard deviation values for all the cash flows
- Use our same NPV discount rate as before, and specify a sample size of 10k

# Monte Carlo Simulation

```
# 42 = seed for reproducibility, leave blank for true randomness
rng = np.random.default_rng(42)

# Sample normally distributed cash flows for each year
cash_flows = rng.normal(
    loc=cf_means,
    scale=cf_stds,
    size=(num_samples, len(cf_means)))
)
```

- Set up the random number generator
- Create the 10k normally-distributed cash flows


# Monte Carlo Simulation

```
# Discount factors for each period
discount_factors = 1 / (1 + discount_rate) ** np.arange(0,
len(cf_means))

# Compute NPV for every simulation
npvs = np.sum(cash_flows * discount_factors, axis=1)
```

- Create an array of discount factors to easily calculate the array of NPVs (then plot).

# Monte Carlo Simulation



# Monte Carlo Simulation

## Optional Summary Stats

Simulated Cash Flow Statistics Across All Years:

Mean: 45,034

Median: 105,070

5th percentile: -247,232

95th percentile: 226,491

Summary NPV Statistics Across All Years:

Mean NPV: 151,174

Median NPV: 149,943

5th percentile NPV: -50,702

95th percentile NPV: 357,194

Risk of loss: 11.17%

- Can use in a presentation: “Losses not to exceed \$51k with 95% confidence” (a.k.a. Value at Risk/VAR)

# Presenting to Decision Makers

# Simplify Everything

- You have modeled everything down to the last dollar and cent, which is great for building your case, but
- Your audience is likely to have a far wider horizon, and much less time or patience for detail
- Round numbers to the nearest grouping when possible, e.g. €4m, \$210k
- Never include anything beyond the decimal point, e.g. cents in USD



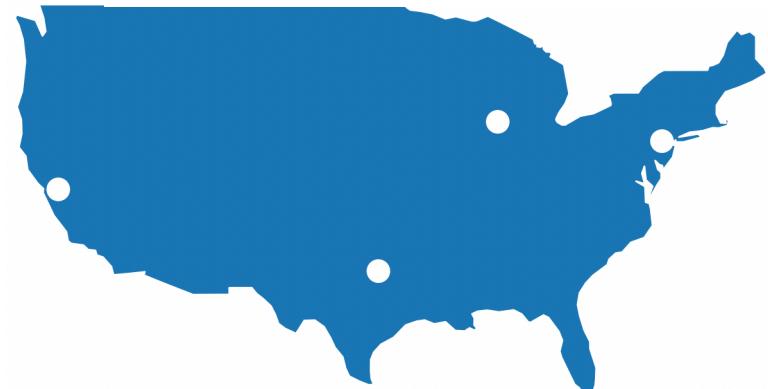
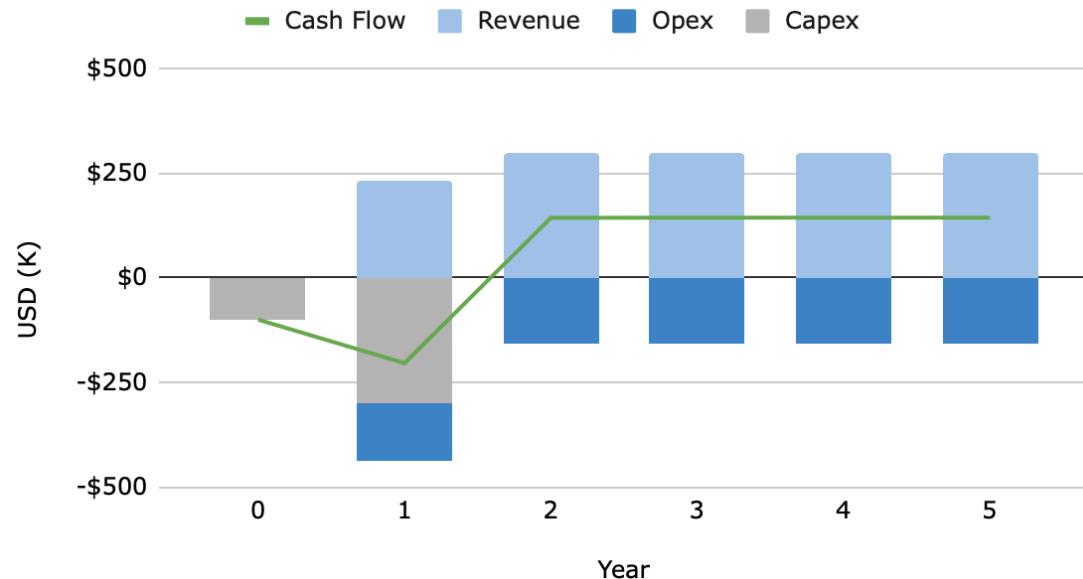
RIP

# What's the upshot?

- Lead with your end goal (e.g. Want to allocate budget to automation, or fund a start-up to do x)
- Provide a quick problem statement, 2-3 slides of why
- Be very clear about the need (how much \$ and when?)
- Provide an at-a-glance slide with graphs, ask, key metrics, risks, and any risk mitigation plans
- Keep back a set of detailed additional slides to draw from in case of questions, and/or a business plan

# Enter 4 New US Markets in 2026

## KEY SALES ASSUMPTIONS



|                              |        |
|------------------------------|--------|
| Market Entry / Pipeline      | \$5K   |
| Market Entry Ramp Up (mo)    | 4      |
| Monthly Escalation           | 2%     |
| Monthly Sales Cap per Market | \$6.2K |
| Total Sales over 5 years     | \$1.4M |

## BUDGET REQUESTS

|                                 |        |
|---------------------------------|--------|
| Capital Expenses in 2026        | \$400K |
| Operating Expenses over 5 years | \$764K |

## USES OF BUDGET

|                   |        |
|-------------------|--------|
| Network Equipment | \$400K |
| Colocation        | \$129K |
| Power             | \$157K |
| Transit           | \$468K |



## KEY METRICS

|                 |        |
|-----------------|--------|
| NPV @ 8%        | \$152K |
| IRR             | 26%    |
| VAR (95th %ile) | \$51K  |

# The Takeaway

- You can absolutely learn this! But...
- Get expert help if there's any question of legality (tax, financial reporting, or otherwise), model sanity, or of introducing any other risk (e.g. LLM use)
- This can mean outside professionals, or your own financial and legal department(s)
- External due diligence / auditing is usually required anyway for any formal investment or acquisition



# Thank you

[barrie@barriejonescook.com](mailto:barrie@barriejonescook.com)

<https://github.com/barriejc/fa4tp.git>