Network-as-Code in Practice: Safer
Change Operations with CI/CD, Testing,
and Data Models

Practical implementation approaches operators
can adopt today

Navin Suvarna - Principal Architect - Cisco Systems
01-JAN-2026

Agenda

01 Why

02 What

03 How

04 Recorded Demo

TUNANOCG

Network Operations Challenges - Real

World

3

[r——

Manual Changes

Lack of Version
Control

Configuration
Drift

n

200

Lack of Testing &
Validation

Best Practice
Violations

“UNANOG

Network-as-Code (NAC) - Operating
Model Outcomes

Simplify

(@) -

Optimize Test & Validate

Configuration
Consistency

Fewer Rollbacks

Faster Service
Onboarding

TUNANOG |

Clear Change
Ownership

Unified Automation

Terraform Primer - Declarative IAC Tool

Terraform is a Declarative
Infrastructure as Code (IAC)
Tool

/

provider “router” {
username = admin"”
password = NANOGI123"
url = https://10.1.1.1"

N

\

J

TUNANOG

@ou rce “router_vrf* "WRFs" { \

name = VRF-PROD"
rd = 100:10.1.1.1"

}

resource router_ospf" "OSPF" {
process id =10
router _id =10.1.11

passive default =true

& /

NAC vs IAC Tools

Native Terraform - Define Variables

variable "vrfs" {
default = {
VRF1={
name = "VRF-PROD"
3
VRF2 = {
name = "VRF-DEV"
}
}
}

variable "ospf" {
default = {
OSPF 10 = {
process _id =10
L
OSPF20 ={
process id =20
}
}
}

TUNANOG

NAC vs IAC Tools

Native Terraform - Loops + Dependencies

resource “router_vrf* "VRFs" {
for each =varuvrfs
name =eachvalue.name

}

resource “router_ospf" "OSPF" {
depends_on = [router vrf.VRFs]
for each =var.ospf
id = each.value.process id

}

TUNANOG

NAC vs IAC Tools

NAC - Simplified Config Intent

-

router:
devices:
- name: router-1
url: https://10.10.20.48
configuration:
vrfs:
- name: "VRF-PROD"
- name: "VRF-DEV"

routing:
ospf processes:
- id: 10
vrf: "VRF-PROD"
- id: 20
vrf: “VRF-UAT”

TUNANOG

NAC Separates Data from Code
Input YAML - Data

router:
devices:
- hame: router-1
url: https://10.10.20.48
configuration:

vrfs: routing:
- name: "VRF-PROD" ospf_processes:
- name: "VRF-DEV" -id:10
vrf: "VRF-PROD"
- id: 20

vrf: “VRF-UAT"

TUNANOG

NAC Separates Data from Code
Schema YAML - Code

vrfs:
name: str()
description: str(required=False)
rd: regex("A((\d{1,5}:\d{1,10})| .. required=False)

routing_ospf processes:
id: any(int(min=1, max=65535), required=False)
vrf: str(required=False)

TUNANOG

NAC Separates Data from Code
Module TF -

-

\§

locals {
vrf = flatten(]
for device in local.devices : [
for vrf in try(local.vrfs, [1) : {}

resource “router_vrf" "vrfs" {
name = each.value.name
description = each.value.desc
rd = each.value.rd

locals {
ospf = flatten([
for device in local.devices : [
for ospf in try(local.ospf|]) : {}

resource “‘router_ospf" "ospf" {
id = each.value.process _id
vrf = each.value.vrf

depends _on =[router vrfvrfs]

TUNANOG

Git-Driven Change Workflow - Validate,
Review, Deploy, Notify

/ Git - Commit Config Intent \
Source Code |router. D
devices: routing:
& > ¥ GitLab | - name: router-1 ospf processes:
¢)GitHub configuration: - id: 10
vrfs: vrf: "VRF-PROD'
- name: "VRF-PROD' - id: 20
_ - name: "VRF-DEV vif: VRF-UAT'

UNANOG ¥ Jenkins ¥ GitLab ClI %sGitHub Actions

Git-Driven Change Workflow - Cont'd

Validate Config Intent

6an and Deplo)

S terraform fmt
S nac-validate

K— name: "VRF-PROD'V ~ id: 20

> router: |
devices: routing:
- name: router-1 ospf_processes:
configuration: - id: 10
vrfs: ° vrf: "VRF-PROD*Y

v/

- Nname: "\/R F_DE\/" V \/I']C a\/RF‘UAT" V

TUNANOG

S terraform init
S terraform plan
S terraform apply

Git-Driven Change Workflow - Cont'd

Test Operational State

S nac-test

.

VRF. Robot:
Verify VRF {VRF.name}}
S{r} Get on session

Should be equal S{rjson}

OSPF. Robot:

Verify OSPF {{OSPF.id}}
S{r} Get on session
Should be equal S${rjson

TUNANOG

)/

/

Webhooks

/

Automation Operational Workflow

O — S— ~H§a°—> @ S @

Git commit Validation Deploy Testing Notification
0) J
%o Test Environment O
r[—]j ... > ' .
Operator Production GIT commit
0 ¢ !

8 <« B « & <« Yo «
Notification Artifacts Testing Deploy Validation

TUNANOG

Reference Architecture

User
Interaction

() ITSM| | ZSelf Service |
.

Orchestrati b lgm oo DT e
FENESIAtoN 127 Network Automation - API Layer

.

Source of Truth GitLab & O GitHub
Automation Engine @ Ansible " Terraform @ OpenTofu

Network Infrastructure
(Datacenter - Campus - WAN - Virtual / Cloud)

TUNANOG

Incremental Adoption

Assess Infrastructure Integration
20O |
Assessment Automation Infra ITSM Base Build
@ ® @ @ = @
Software

TUNANOG

Incremental Adoption

Build Code Code Full Test
Branch Commit
Change . . . ‘ Code Tesjc &
Request/ o Merge Validate
G 0 EEEEEEE——— O Micro Tests ®

e

Config Test | Execution Schedule | ITSM Approvals

Provisioning Governance
TUNANOCG

Recorded Demo

File Edit Selection View Go Run - & nac-iosxe [SSH: p6-u-jumphost]

access_switches.nacyaml M X access-sw01.nac.yaml access-sw02.nac.yaml schema.yaml| 102_trunk_validation.py

data> ! access switches.nacyaml > {}iosxe > {} global

o1 "NANOG96"
"nanog.org"
'ty "public”

[]

X SSH: pb6-u-jumphost ié‘) master* (:) ®0A0 Wo ¢ Navin Suvarna (3 months ago) ® In 6,Col 10 Spaces:2 UTF-8 LF {} yamL 83 Network-as-Code Data Model &

Thank you

TUNANOG

