
Network-as-Code in Practice: Safer
Change Operations with CI/CD, Testing,

and Data Models
Practical implementation approaches operators

can adopt today

Navin Suvarna – Principal Architect – Cisco Systems
01-JAN-2026

Agenda

01 Why
02

How03
What

04 Recorded Demo

Why ?

Network Operations Challenges – Real
World

Lack of Version
Control

Best Practice
Violations

Lack of Testing &
Validation

Configuration
Drift

Manual Changes

Network-as-Code (NAC) – Operating
Model Outcomes

Simplify Optimize Test & Validate

Fewer Rollbacks

Unified Automation

Faster Service
Onboarding

Configuration
Consistency

Clear Change
Ownership

What ?

Terraform Primer – Declarative IAC Tool
Terraform is a Declarative
Infrastructure as Code (IAC)
Tool resource “router_vrf" "VRFs" {

name = "VRF-PROD"
rd = "100:10.1.1.1"

}

resource “router_ospf" "OSPF" {
process_id = 10
router_id = 10.1.1.1
passive_default = true

}

provider “router" {
username = "admin"
password = “NANOG123"
url = “https://10.1.1.1"

}

NAC vs IAC Tools
Native Terraform – Define Variables

variable "vrfs" {
default = {
VRF 1 = {
name = "VRF-PROD"

},
VRF2 = {
name = "VRF-DEV"

}
}

}

variable "ospf" {
default = {
OSPF 10 = {
process_id = 10

},
OSPF20 = {
process_id = 20

}
}

}

NAC vs IAC Tools
Native Terraform – Loops + Dependencies

resource “router_vrf" "VRFs" {
for_each = var.vrfs
name = each.value.name

}

resource “router_ospf" "OSPF" {
depends_on = [router_vrf.VRFs]
for_each = var.ospf
id = each.value.process_id

}

NAC vs IAC Tools
NAC – Simplified Config Intent

router:
devices:
- name: router-1
url: https://10.10.20.48
configuration:
vrfs:
- name: "VRF-PROD"
- name: "VRF-DEV"

routing:
ospf_processes:
- id: 10
vrf: "VRF-PROD“

- id: 20
vrf: “VRF-UAT”

NAC Separates Data from Code
Input YAML - Data

router:
devices:
- name: router-1
url: https://10.10.20.48
configuration:
vrfs:
- name: "VRF-PROD"
- name: "VRF-DEV"

routing:
ospf_processes:
- id: 10
vrf: "VRF-PROD“

- id: 20
vrf: “VRF-UAT”

NAC Separates Data from Code
Schema YAML - Code

vrfs:
name: str()
description: str(required=False)
rd: regex("^((\d{1,5}:\d{1,10})| … required=False)

routing_ospf_processes:
id: any(int(min=1, max=65535), required=False)
vrf: str(required=False)

NAC Separates Data from Code
Module TF - Code

locals {
vrf = flatten([
for device in local.devices : [
for vrf in try(local.vrfs, []) : {}

resource “router_vrf" "vrfs" {
name = each.value.name
description = each.value.desc
rd = each.value.rd

locals {
ospf = flatten([
for device in local.devices : [
for ospf in try(local.ospf,[]) : {}

resource “router_ospf" "ospf" {
id = each.value.process_id
vrf = each.value.vrf
depends_on = [router_vrf.vrfs]

Git-Driven Change Workflow – Validate,
Review, Deploy, Notify

Source Code

GitLab
GitHub

router:
devices:
- name: router-1

configuration:
vrfs:
- name: "VRF-PROD"
- name: "VRF-DEV"

Git - Commit Config Intent

routing:
ospf_processes:
- id: 10
vrf: "VRF-PROD“

- id: 20
vrf: “VRF-UAT”

Jenkins GitLab CI GitHub Actions

1

Git-Driven Change Workflow – Cont’d

router:
devices:
- name: router-1

configuration:
vrfs:
- name: "VRF-PROD"
- name: "VRF-DEV"

Validate Config Intent

routing:
ospf_processes:
- id: 10
vrf: "VRF-PROD“

- id: 20
vrf: “VRF-UAT”

$ terraform fmt
$ nac-validate

Plan and Deploy

$ terraform init
$ terraform plan
$ terraform apply

State

2 3

Git-Driven Change Workflow – Cont’d

Test Operational State

$ nac-test

VRF. Robot:
Verify VRF {{VRF.name}}
${r} Get on session
Should be equal ${r.json}

OSPF. Robot:
Verify OSPF {{OSPF.id}}
${r} Get on session
Should be equal ${r.json}

Notify

Chat

Emails

Webhooks

4 5

Automation Operational Workflow

NotificationGit commit

GIT commitOperator

Deploy Validation

ValidationTestingNotification Artifacts

Testing

Deploy

Test Environment

Production

Reference Architecture

18

Network Infrastructure
(Datacenter • Campus • WAN • Virtual / Cloud)

User
InteractionITSM Self Service AI ChatOpsGitOps

Workflow Engine
Network Automation – API Layer

GitLab GitHub
Ansible Terraform OpenTofu

Source of Truth
Automation Engine

Orchestration

How ?

Incremental Adoption

InfrastructureAssess

Assessment Base BuildAutomation Infra

Software

Integration

ITSM

Incremental Adoption

Build

Provisioning

Micro Tests

Code
Branch

ExecutionConfig Test

Governance

ITSM ApprovalsSchedule

Change
Request

Full Test

Test &
Validate

Code
Merge

Code
Commit

Recorded Demo

NAC Workflows – Demo

23

Recorded Demo – Validation + Post-Change Verification
Behavior

The demo is intended to illustrate validation outcomes and
post-change verification, not tool UX

Thank you

