#### **NANOG 16 -- May 1999 -- Eugene, OR**

# So Your Customer Wants a VPN

### **Howard C. Berkowitz**

Gett Communications hcb@clark.net (703)998-5819

# <u>Issues</u>

- Understanding Requirements
- Managing Expectations
- Defining your Service
- Deployment Issues

# **Motivations**

# **Customer Goals**

- Saving money

- Enabling workforce distribution
- Building strategic alliances
- Improving operational flexibility

# **Customer Constraints**

- Availability & Performance
- Security
- Compatibility
- Manageability
- Budget

**Clue Factor** 

# **Common Customer Confusions**

- VPN over IP = VPN over Internet
  - "whee! I can replace all my Frame Relay with \$20 a month ISP connections!"
- VPN = "selling on the net"
  - Membership must be established before communication
- "The VPN does all my security"
- "I can get controlled QoS over the Internet"

# **Workforce Distribution**

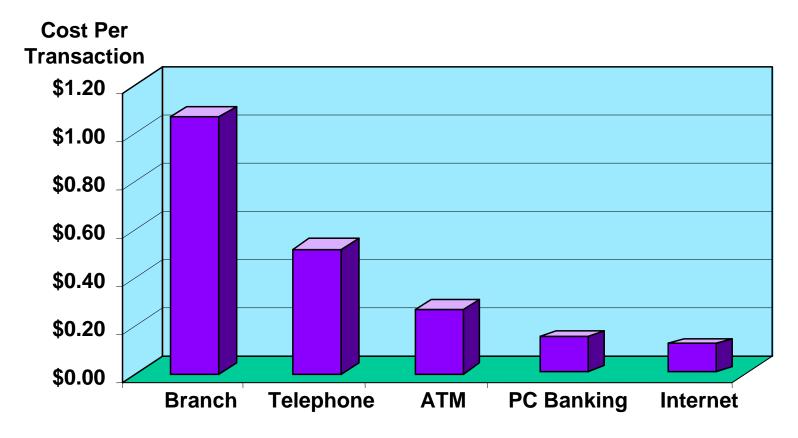








**Source: Cisco University VPN Seminar** 


# **Special Challenges**

- Voice
- Video
- Image retrieval
- Greater involvement with applications

# **High Speed Last Mile**

- V.90, multiple modems (MLPPP)
- ISDN
- xDSL
- Fixed wireless
- Cable
- Fiber to the neighborhood/building

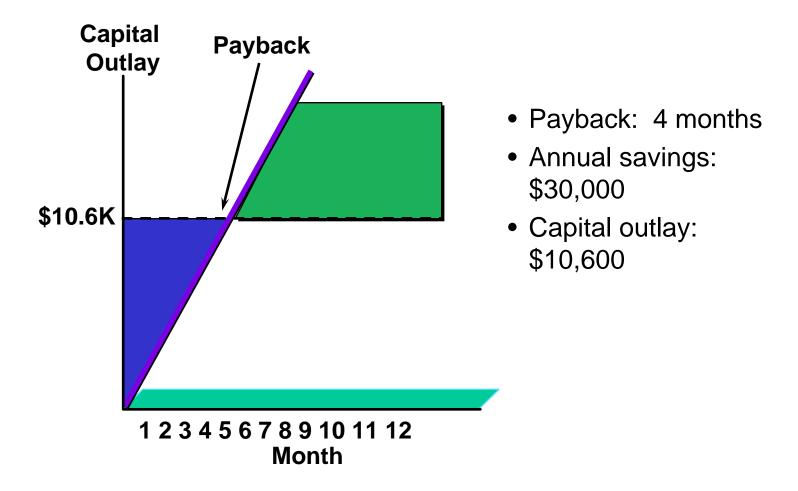
# Network Commerce Cost Savings



# **Customer Financial Analysis**

# **Cost Components**

- Direct one-time costs
  - Access servers
  - Server routers
- Direct recurring costs
  - Dial charges
  - Line charges
  - Vendor support


- Indirect recurring costs
  - WAN Administrator time
  - Security/server administrator time

# **Direct Cost Comparison**

| Traditional Dial-Up                                                                               |                          | Access VPN                                                                                  |                          |  |
|---------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------|--------------------------|--|
| Set-up Costs Number of Users Remote Access Server One-time-installation                           | 20<br>\$3,000<br>\$1,000 | Number of Users Access Router, T1/E1, DSU/CSU, Firewall VPN Client Software (\$50 per user) | 20<br>\$4,600<br>\$1,000 |  |
| Fee—10 Phone Lines                                                                                |                          | T1/E1 installation                                                                          | \$5,000                  |  |
| Recurring Costs  Monthly Long-Distance charges per minute Average use Per Day Per User in Minutes | \$0.10<br>90             | Central Site T1/E1 Intranet Access Monthly ISP access (\$20 per user)                       | \$2,500<br>\$400         |  |

**Source: Cisco University VPN Seminar** 

# Payback in Four Months!



# **VPN Outsourcing Options**

#### **Increasing Enterprise Network Role**

90%

Network Manager
Buys Products from
VPN Vendors and
Manages Network

SP Supplies
Basic Internet
Access

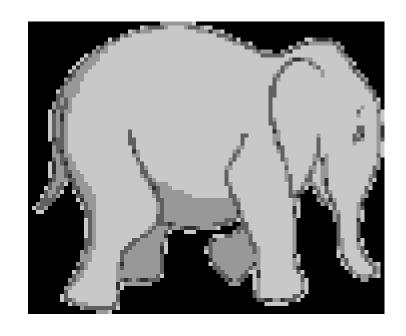
**10%** 

50%
Network Manager
Provides Ongoing
Application and
Configuration
Management and Help
Desk Support

SP Supplies VPN
Equipment and Adds
QoS to Bandwidth
Offering

.............

50%


Net Manager Administers Security Server

SP Supplies Complete
VPN Solution,
including Service,
Training, and Help
Desk

90%

**Increasing Service Provider Role** 

Infonetics, 1997



**Defining VPNs** 

- 3Com white paper
  - "A VPN is a connection that has the appearance and many of the advantages of a dedicated link but occurs over a shared network." VPNs use tunneling

- Ascend (3 related architectures)
  - Virtual Private Remote Networking (VPRN) with tunneling for remote LAN access
  - Virtual Private Trunking (VPT) to establish the equivalent of leased lines among major facilities
  - Virtual IP Routing (VIPR) to internetwork branch offices or establish extranets with closed user groups

#### Cisco

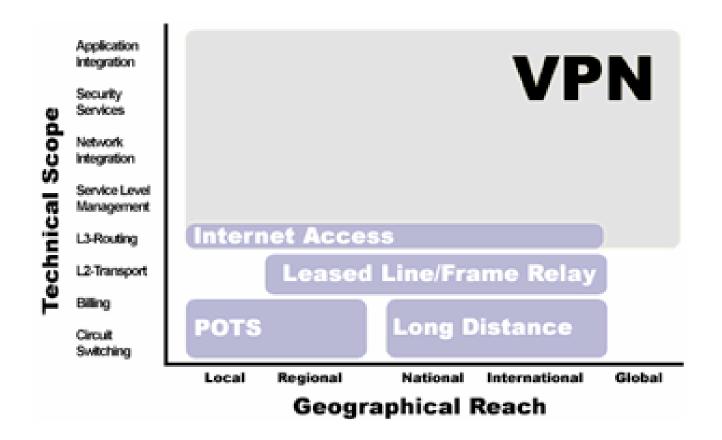
 Customer connectivity deployed on a shared infrastructure with the same policies as a private network

# Ferguson & Huston

 "A VPN is a private network constructed within a public network infrastructure, such as the global Internet."

#### Infonetics

- "VPNs use public networks to extend the reach of the enterprise network to remote sites, individual remote workers, and business partners."


#### V--One

- "the security technology that will enable companies to leverage the Internet as private enterprise backbone infrastructure."

# **IETF Work**

- No WG yet. BOF last met in Orlando (December)
- Many working drafs at http://www/ietf.org/internet-drafts/xxx
  - draft-gleeson-vpn-framework-01.txt
  - draft-rosen-bgp-mpls-0x.txt
  - draft-berkowitz-vpn-tax-00.txt
  - draft-fox-vpnid-00.txt

# **Scope and Function**



Source: VPNet Technologies http://www.vpn.com/services/vpnsure.htm

# More Formally, a VPN has...

- Core User Capabilities
- Optional user capabilities
- Administrative model
- Mapping methods
- Transmission infrastructure

# **Core User Capabilities**

- User Scope
  - Intranet via provider
  - Extranet via provider
  - Hybrid/bypass
- Set of users and servers
- Security policy
- Availability policy
- Addressing & Naming Model
- VPN ID (which may be null)

# **Optional User Capabilities**

- Security mechanisms
- QoS Mechanisms
- Billing
- Addressing & naming services
- Non-IP support

# **Operational Model**

- Responsibility for premises routers
  - WAN
  - LAN
- Responsibility for user support
- Responsibility for security
- Responsibility for QoS

- Help desk
- Adds and changes
- QoS
  - Engineering
  - Measurement
  - Compliance
- Security
  - Policy
  - Enforcement
  - Response to events

# **Mapping Functions**

- Tunnels
- Virtual circuits
- Real on-demand circuits
- Real dedicated lines

## **Transmission Infrastructures**

- Dial networks
  - local loop alternatives: xDSL, cable, etc
- Frame relay, ATM, other VC services
- Routed IP clouds
- MPLS
- Dedicated lines
- RFC 1149

# **Core Capabilities**

# **Membership**

- Has to be defined by customer
- Endpoint may belong to:
  - More than one VPN
    - Intranet
    - Extranet
  - P ublic Internet
- Provider has to track multiple VPNs

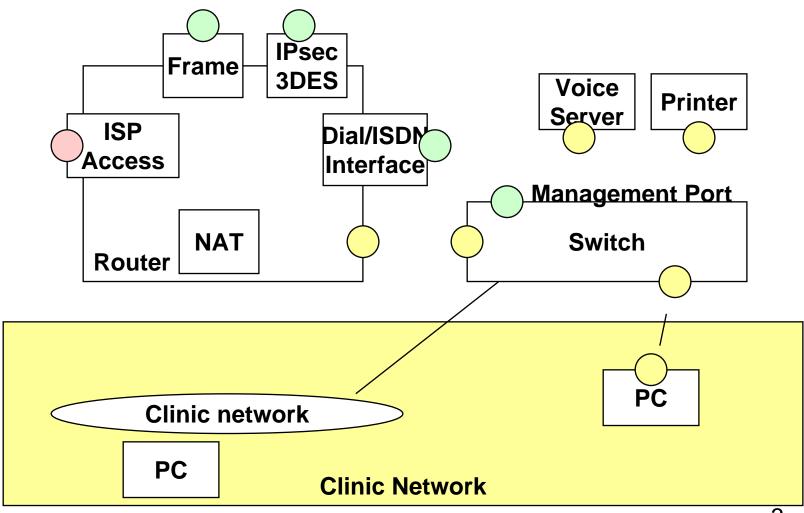
# **Security Policy (distinct from plan)**

- Who is authorized to use what
  - Time of day, other qualifiers
- Kinds of users
  - Operations, inside, partners, public
- Enforcement policy
  - Something backed by top management
- Good policy is 1-2 pages

# A Secure Communication may have:

- Authenticity
  - User/client, server
- Integrity
  - Unitary vs. sequential
  - Non-Repudiation

- Confidentiality
  - Lightweight, middleweight, strong
- Availability
  - Network failures, denial of service attacks


# **Addressing & Naming Model**

- Issues
  - Private vs. public space
  - PI vs PA
  - Multihomed routing
  - Routing registries
  - NAT
    - Application transparency
    - End-to-end assumption traceability
  - Other addressing & naming manipulation

# **NHS Architecture**

| Customer<br>Core         | ,                 | Network Mg        | ıt               |                                 |
|--------------------------|-------------------|-------------------|------------------|---------------------------------|
| Frame Rel<br>Core VC     |                   |                   |                  |                                 |
| Customer<br>Distribution | Data<br>Ctr       | ISP 1             | ISP 2            |                                 |
| Clinic                   | Data Ctr<br>Local | Trans             |                  |                                 |
| Clinic                   | c address space   | may be private    | or registered    |                                 |
| regis                    | stered            | Arbitrary registe | ered space trans | 3<br>scriptionist addresse<br>4 |

# **Clinic Site**



3

5/22/1999 5:55 PM

5

# **Non-IP Services**

- Issues
  - Does the ISP really understand these?
  - Transition planning
  - Performance expectations

# **Trust Models**

- End-to-end
- Security gateway
- ISP-centric

# **Application Models**

# **Access VPN**

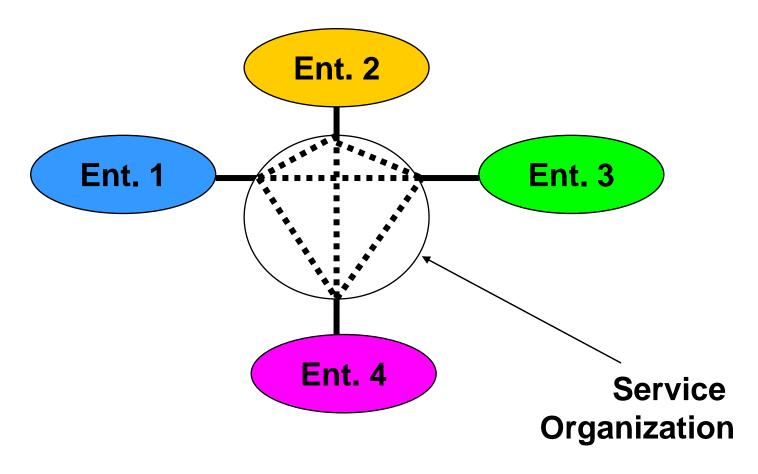
| Core            |                         |                    |  |  |
|-----------------|-------------------------|--------------------|--|--|
| VPN Service     | Central Distribution    |                    |  |  |
| Remote<br>Users | Central<br>Site Clients | Central<br>Servers |  |  |

#### **VPN Distribution Tier**

VPN Router

**Access Control** 

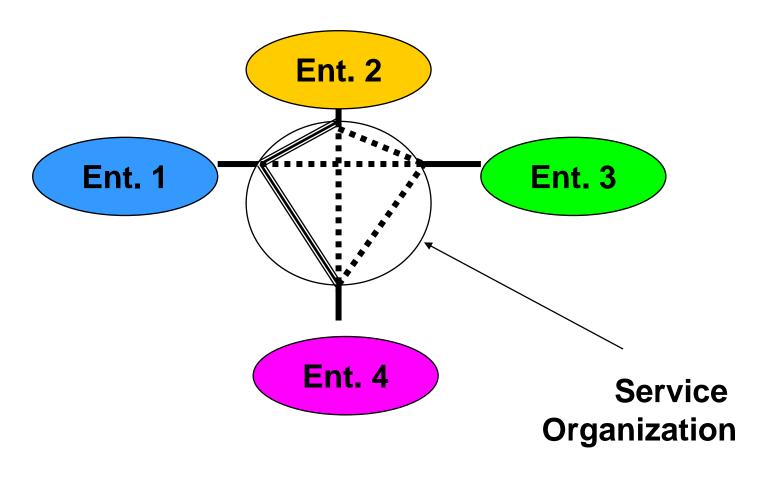
Internet Router Provider Network


Network Access Servers

4

# **Dual VPN access**

| Core               |                 |                         |                    |  |
|--------------------|-----------------|-------------------------|--------------------|--|
| Internet<br>Access | VPN Service     | Central Distribution    |                    |  |
|                    | Remote<br>Users | Central<br>Site Clients | Central<br>Servers |  |

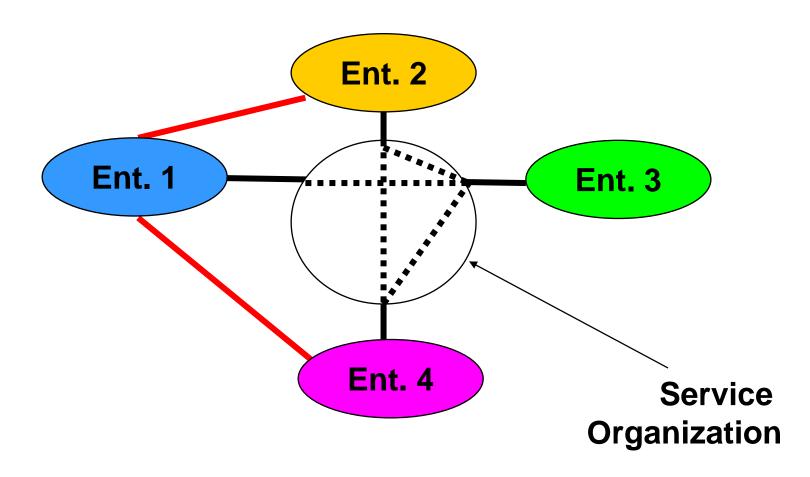

# **VPN** service organization



4

5/22/1999 5:55 PM

# **Hybrid VP N**

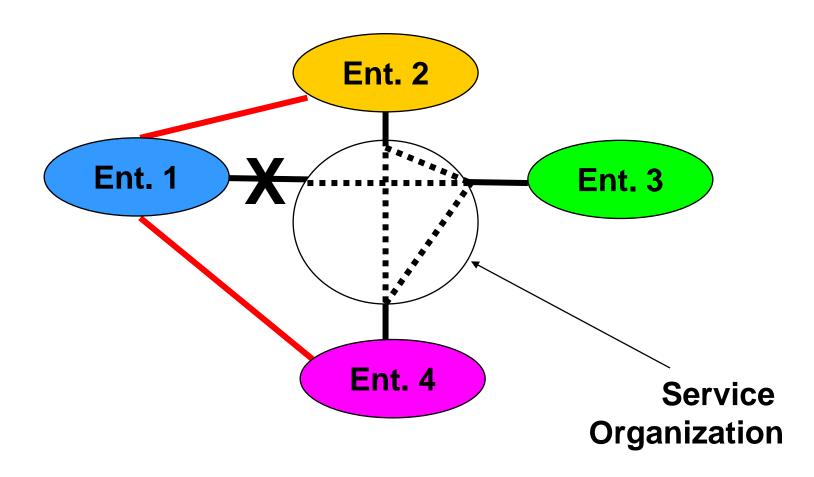



4

5/22/1999 5:55 PM

3

# **VPN** bypass




4

5/22/1999 5:55 PM

4

# **Need for Policy Routing**



4

5/22/1999 5:55 PM

# **Optional User Capabilities**

# **Security Services**

- Components
  - Host
  - Customer firewall
  - Network
  - Service provider firewall
  - CertificateAuthority
  - Identification servers
  - Log servers

- Activities
  - User IDs
  - Certificates
  - Key management
  - Attack detection
  - Attack response

## Who is Responsible?

- User identifiation& authorization
  - Password/key management
  - Per-user accesslists
- End-to-end encryption
  - Client distribution
  - Key management

- Network security
  - Customer routers/firewalls
  - Provider devices
  - Key management
  - Intrusion detection& response

## **Encryption Performance Tradeoffs**

- Clients
  - IPsec
  - SOCKS/SSL
- Application Servers
  - Software encryption
  - Coprocessor
- Router
  - Software encryption
  - Coprocessor

- Encryption server
- Firewall
- Access server
  - Proxy
  - L2TP + IPsec
- Keys
  - Key size
  - Pregeneration
  - Change frequency
  - Revocation

## **QoS Deployment**

- Prerequisites
  - Policy
  - Means of identifying and marking priority traffic
  - Workload assumptions

- KISS mechanisms
  - Dedicated media
  - VCs with good SLA
- Advanced
  - RSVP
  - WFQ, WRED, etc.
- Bleeding edge
  - Multiprovider QoS

## **Addressing & Naming Services**

- Mechanisms
  - DNS
    - inside & outside?
    - who runs?
  - Dynamic addressing
    - DHCP inside
    - PPP (static inside, NAS pools, AAA server, DHCP proxy)
  - Address management for infrastructure
  - Addressing & Naming Manipulation
    - Caches, load-sharing mechanisms

# **Non-IP services**

- Mechanisms
  - Tunneling
  - Translation
  - Proxies

# **Operational Responsibilities**

# **Control Points**

- Customer router
- ISP router at customer site
- NAS

## **Help Desks**

- Customer-operated single point
- ISP-operated single point
- Separate network & application

## Adds, Moves, & Changes

- Models
  - User to ISP
  - Customer admin to ISP
- Coordination between customer and ISP

# **Mapping Functions & the User**

#### **NATs and Proxies**

Application Caches

Load Aware DNS

Load Sharing NAT

PAT/NAPT

**Classic NAT** 

Content-Aware Proxy

**Traffic-Aware** 

**Proxy** 

**Application** 

**Proxy** 

Circuit

**Proxy** 

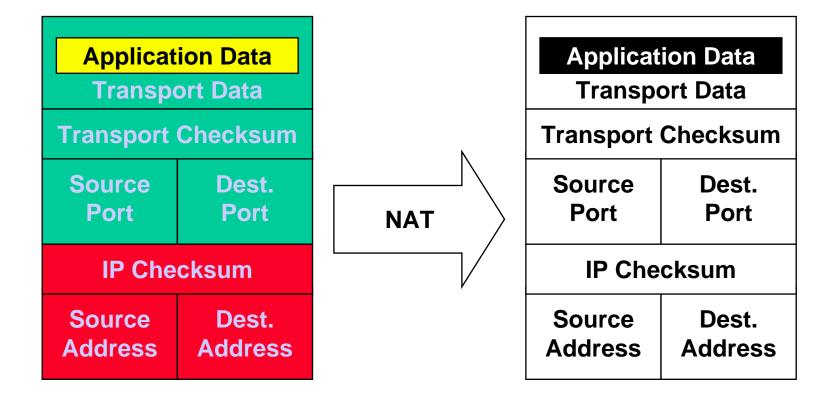
**Stateful** 

**Packet Filter** 

**Packet Filter** 

**Frame Filter** 

**IPsec** 


**Tunneling** 

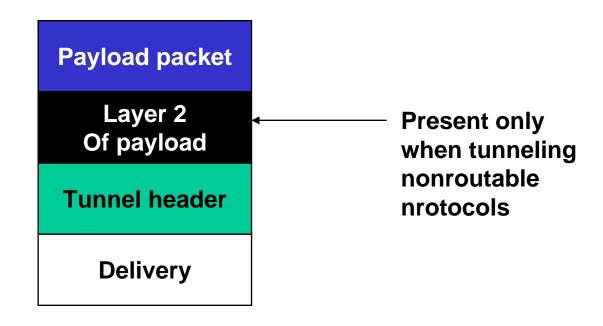
5

5/22/1999 5:55 PM

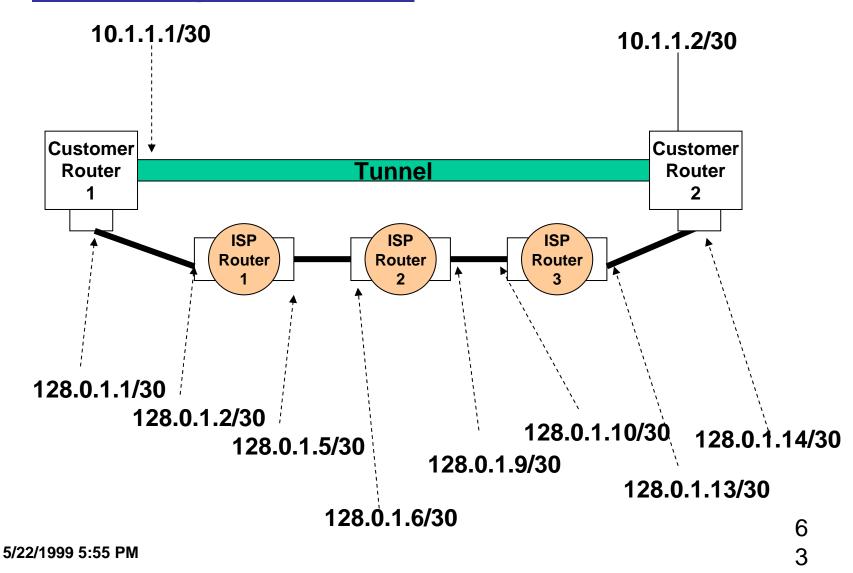
2

## What has to happen?

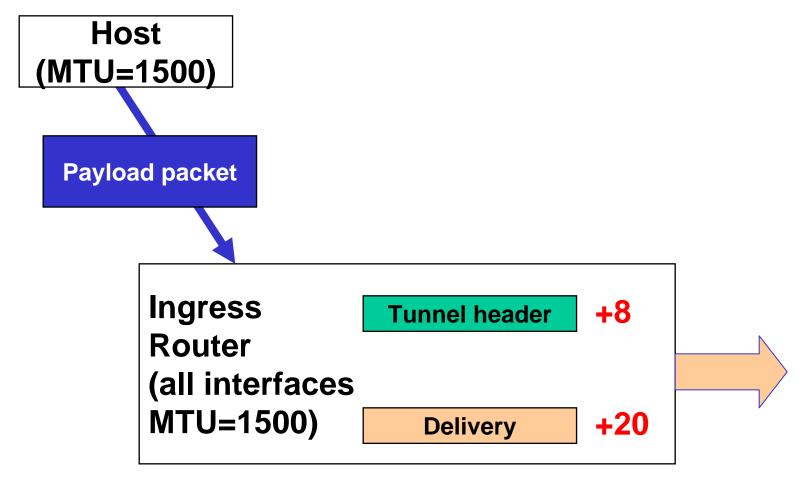



## **Layer 3/4 Tunnels**

- IPsec (provides security)
- GRE (carries security or runs over trusted network)
  - PPTP
  - X9.17, etc.
  - Host IPsec with bogus addresses
  - Other encryption


## **Layer 2 Tunnels**

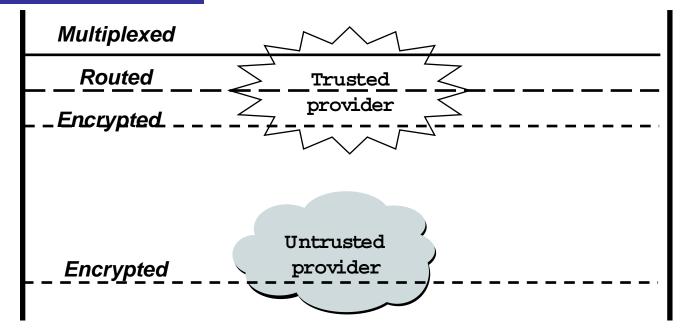
- Proxy remote access service
- Upper layer protocol independent
- Potential for roaming


#### **Basic Tunnel**

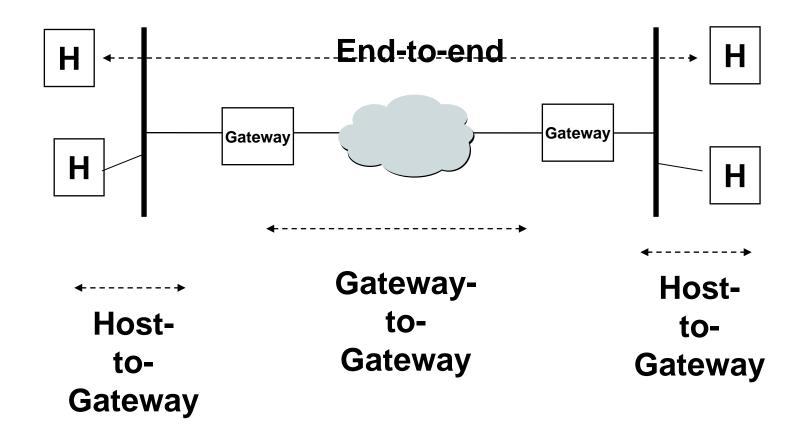


### **Tunneling Traceroute**




## **Tunneling MTU Issues**



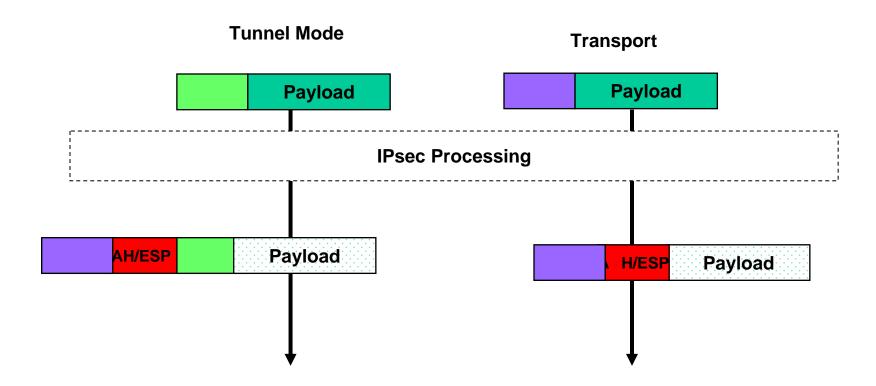

6 4

5/22/1999 5:55 PM

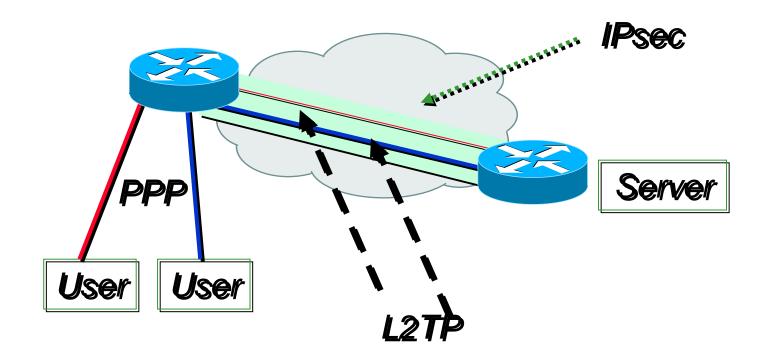
# **Secure Paths**



# **IPsec scope**



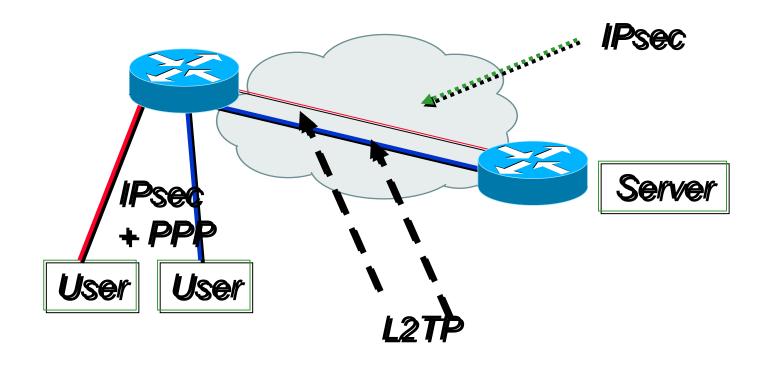

6


5/22/1999 5:55 PM

6

# **IPsec packets**




# **Combined Tunnels--ISP security**



6

5/22/1999 5:55 PM

# **Combined Tunnels -- user security**



6

5/22/1999 5:55 PM

# Transmission Infrastructure Constraints

## **Basic Criteria**

- Adequate bandwidth?
  - Dedicated
  - On-Demand
- Trust?

#### **Additional Criteria**

- Fault tolerance
- Quality of Service
  - Service contract (ATM)
  - Dedicated facility
  - Traffic engineered routing
    - RSVP
    - Emerging QOSR

## **Routed Infrastructure**

- Convergence
- Policy/special considerations
- Inter-provider coordination

## **Conclusions**

- VPNs are a valuable approach to design
  - Even if we aren't quite sure what they are
- Challenges for ISPs
  - Understanding customer
    - requirements
    - perceptions and beliefs
  - Managing expectations & responsibilities
  - Use deployable technologies