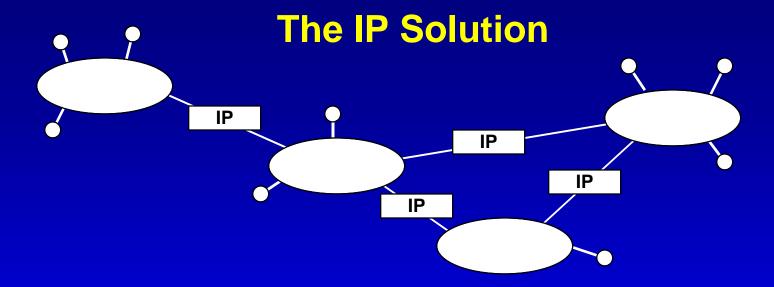

IPv6: Why, What, When, How?

Steve Deering Cisco Systems, Inc. deering@cisco.com

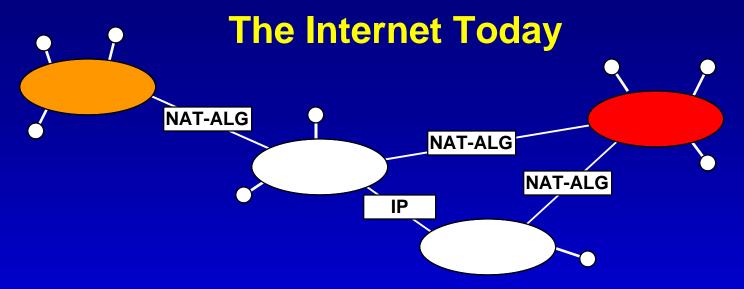
June 11, 2000

Why?



application-layer gateways

- inevitable loss of some semantics
- difficult to deploy new internet-wide applications
- hard to diagnose and remedy end-to-end problems
- stateful gateways inhibited dynamic routing around failures


no global addressability

ad-hoc, application-specific solutions

internet-layer gateways & global addresses

- simple, application-independent, least-common-denominator network service: best-effort datagrams (i.e., packet switching)
- stateless gateways could easily route around failures
- with application-specific knowledge out of the gateways:
 - NSPs no longer had monopoly on providing new services
 - Internet became a platform for rapid, competitive innovation

network address translators and app-layer gateways

- inevitable loss of some semantics
- difficult to deploy new internet-wide applications
- hard to diagnose and remedy end-to-end problems
- stateful gateways inhibit dynamic routing around failures

no global addressability

ad-hoc, application-specific (or ignorant!) solutions

But Isn't There Still Lots of IPv4 Address Space Left?

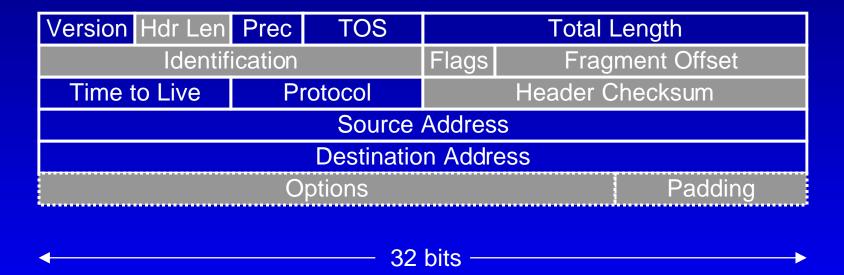
- approx. half the IPv4 space is unallocated today
 - how long does it take for the number of IP devices to double?
- IPv4 addresses are effectively being rationed
 - => consumption statistics tell us nothing about the real demand for addresses, or the hardship created by witholding them
 - the difficulty in obtaining addresses is why many (most?)
 of the NAT-ALGs exist
- new kinds of Internet devices will be much more numerous, and not adequately handled by NATs (e.g., mobile phones, cars, residential servers, ...)

Why Are NATs Not Adequate?

- they won't work for large numbers of "servers", i.e., devices that are "called" by others (e.g., IP phones)
- they break most current IP multicast and IP mobility protocols
- they break many existing applications
- they limit the market for new applications and services
- they compromise the performance, robustness, security, and manageability of the Internet

But Can't We Just Make the NATs Better?

- we could keep adding more protocols and features to try to alleviate some of their shortcomings
 - might improve their functionality, but will increase their complexity, fragility, obscurity, unmanagability,...
 - new problems will arise when we start needing inter-ISP NAT
- doing one thing (moving to IPv6) will avoid the need to continue doing many other things to keep the Internet working and growing
- (no, IPv6 is not the only possible solution, but the most mature, feasible, and widely agreed-upon one)


What?

The IPv6 Header

Traffic Class	Flow Label			
Payload Length		Next Header	Hop Limit	
Course Address				
Source Address —				
Doctination Address				
— Destination Address —				
	Payload Length	Payload Length Source		

32 bits

The IPv4 Header

shaded fields are absent from IPv6 header

Extension Headers

IPv6 header next header = TCP TCP header + data

IPv6 header next header = Routing Routing header

next header =

TCP

TCP header + data

IPv6 header

next header =

Routing

Routing header

next header =

Fragment

Fragment header

next header =

TCP

fragment of TCP header + data

Address Types


- unicast (one-to-one)
 - global
 - link-local
 - site-local
 - compatible (IPv4, IPX, NSAP)
- multicast (one-to-many)
- anycast (one-to-nearest)
- reserved

Address Type Prefixes

address type	<u>binary prefix</u>	
IPv4-compatible	00000 (96 zero bits)	
global unicast	001	
link-local unicast	1111 1110 10	
site-local unicast	1111 1110 11	
multicast	1111 1111	

- all other prefixes reserved (approx. 7/8ths of total)
- anycast addresses allocated from unicast prefixes

Global Unicast Addresses

- TLA = Top-Level Aggregator
 NLA* = Next-Level Aggregator(s)
 SLA* = Site-Level Aggregator(s)
- all subfields variable-length, non-self-encoding (like CIDR)
- TLAs may be assigned to providers or exchanges

Link-Local & Site-Local Unicast Addresses

link-local addresses for use during auto-configuration and when no routers are present:

1111111010	0	interface ID
		interface 15

site-local addresses for independence from changes of TLA / NLA*:

	1111111010	0	SLA*	interface ID
--	------------	---	------	--------------

Multicast Addresses

- low-order flag indicates permanent / transient group; three other flags reserved
- scope field: 1 node local
 - 2 link-local
 - 5 site-local
 - 8 organization-local
 - B community-local
 - E global

(all other values reserved)

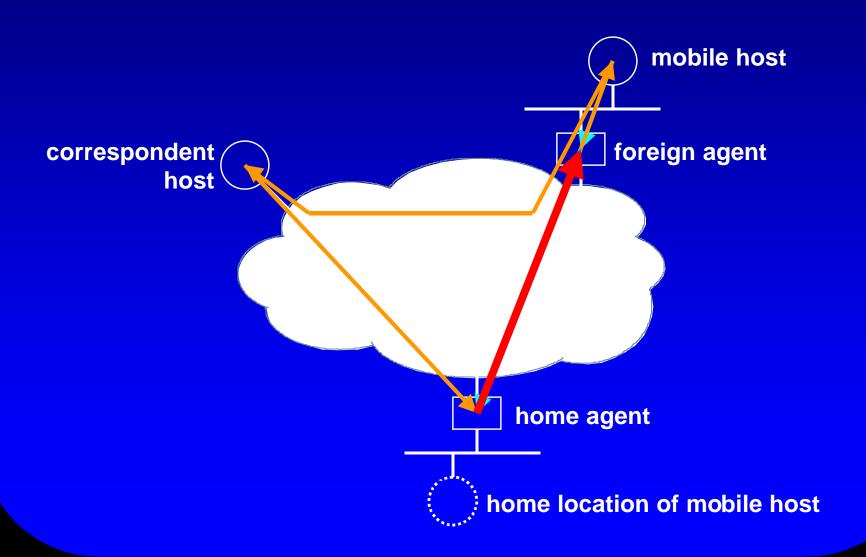
Routing

- uses same "longest-prefix match" routing as IPv4 CIDR
- straightforward changes to existing IPv4 routing protocols to handle bigger addresses

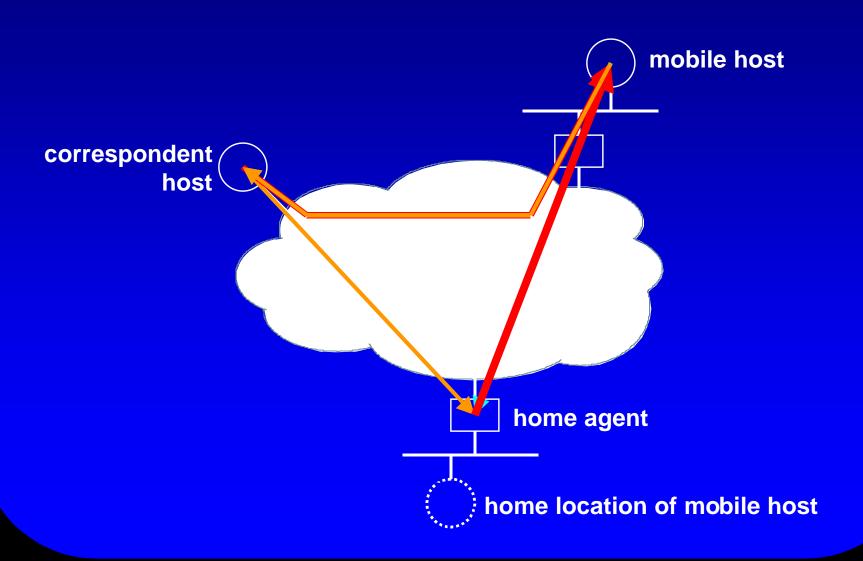
```
unicast: OSPF, RIP-II, IS-IS, BGP4+, ... multicast: MOSPF, PIM, ...
```

 can use Routing header with anycast addresses to route packets through particular regions

e.g., for provider selection, policy, performance, etc.


Serverless Autoconfiguration ("Plug-n-Play")

- hosts can construct their own addresses:
 - subnet prefix(es) learned from periodic multicast advertisements from neighboring router(s)
 - interface IDs generated locally, e.g., using MAC addresses
- other IP-layer parameters also learned from router adverts (e.g., router addresses, recommended hop limit, etc.)
- higher-layer info (e.g., DNS server and NTP server addresses) discovered by multicast / anycast-based service-location protocol [details still to be decided]
- DHCP also available for those who want more control


Auto-Reconfiguration ("Renumbering")

- new address prefixes can be introduced, and old ones withdrawn
 - we assume some overlap period between old and new,
 i.e., no "flash cut-over"
 - hosts learn prefix lifetimes and preferability from router advertisements
 - old TCP connections can survive until end of overlap;
 new TCP connections can survive beyond overlap
- router renumbering protocol, to allow domain-interior routers to learn of prefix introduction / withdrawal
- new DNS structure to facilitate prefix changes

Mobile IP (v4 version)

Mobile IP (v6 version)

Other Features of IPv6

- flow label for more efficient flow identification (avoids having to parse the transport-layer port numbers)
- neighbor unreachability detection protocol for hosts to detect and recover from first-hop router failure
- more general header compression (handles more than just IP+TCP)
- security ("IPsec") & differentiated services ("diff-serv")
 QoS features same as IPv4

How?

IPv4-IPv6 Co-Existence / Transition

a wide range of techniques have been identified and implemented, basically falling into three categories:

- (1) dual-stack techniques, to allow IPv4 and IPv6 to co-exist in the same devices and networks
- (2) tunneling techniques, to avoid order dependencies when upgrading hosts, routers, or regions
- (3) translation techniques, to allow IPv6-only devices to communicate with IPv4-only devices

expect all of these to be used, in combination

Dual-Stack Approach

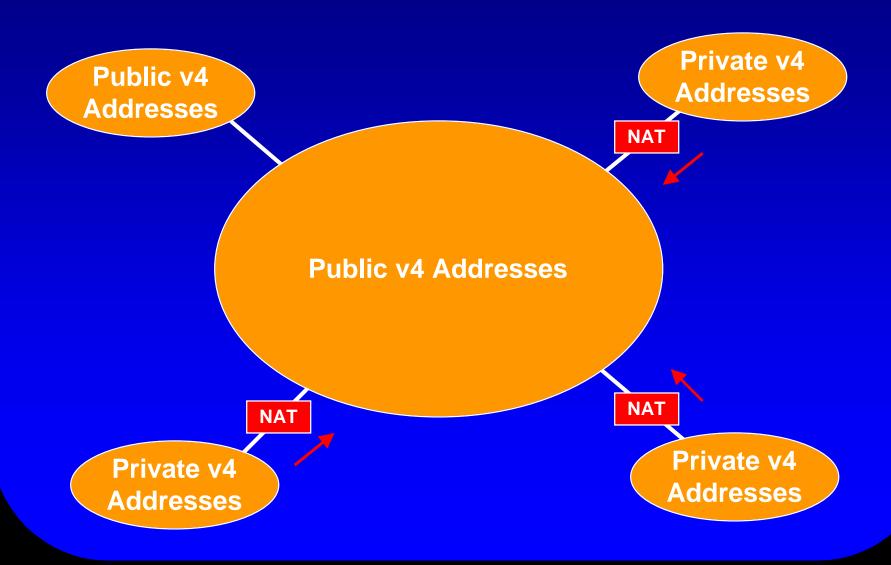
- when adding IPv6 to a system, do not delete IPv4
 - this multi-protocol approach is familiar and well-understood (e.g., for AppleTalk, IPX, etc.)
 - note: in most cases, IPv6 will be bundled with new OS releases, not an extra-cost add-on
- applications (or libraries) choose IP version to use
 - when initiating, based on DNS response:
 if (dest has AAAA or A6 record) use IPv6, else use IPv4
 - when responding, based on version of initiating packet
- this allows indefinite co-existence of IPv4 and IPv6, and gradual, app-by-app upgrades to IPv6 usage

Tunnels to Get Through IPv6-Ignorant Routers / Switches

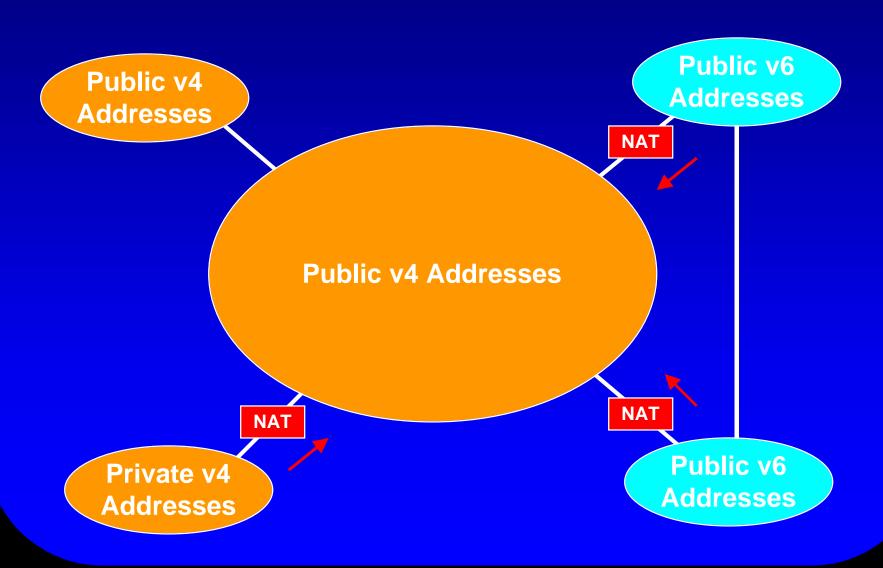
- encapsulate IPv6 packets inside IPv4 packets (or MPLS frames)
- many methods exist for establishing tunnels:
 - manual configuration
 - "tunnel brokers" (using web-based service to create a tunnel)
 - "6-over-4" (intra-domain, using IPv4 multicast as virtual LAN)
 - "6-to-4" (inter-domain, using IPv4 addr as IPv6 site prefix)
- can view this as:
 - IPv6 using IPv4 as a virtual link-layer, or
 - an IPv6 VPN (virtual public network), over the IPv4 Internet (becoming "less virtual" over time, we hope)

Translation

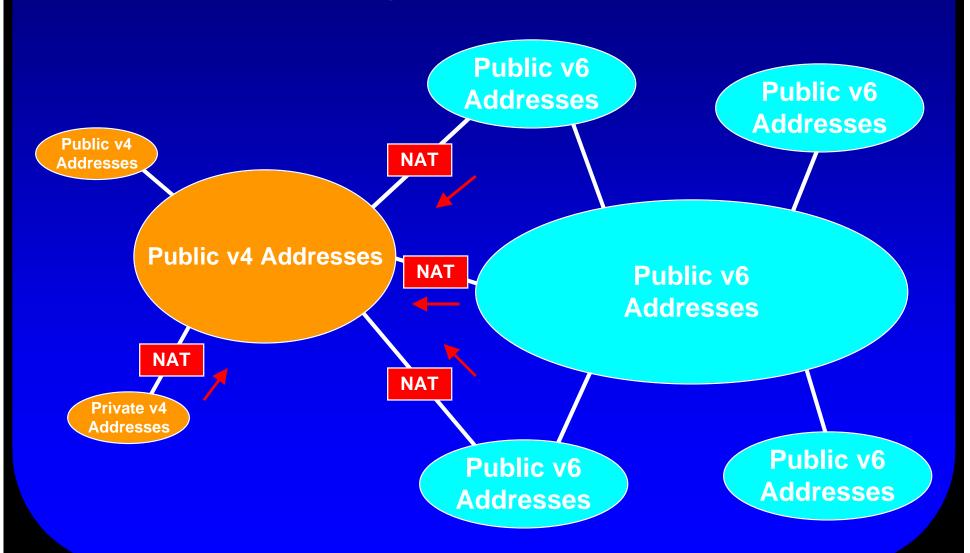
- may prefer to use IPv6-IPv4 protocol translation for:
 - new kinds of Internet devices (e.g., cell phones, cars, appliances)
 - benefits of shedding IPv4 stack (e.g., serverless autoconfig)
- this is a simple extension to NAT techniques, to translate header format as well as addresses
 - IPv6 nodes behind a translator get full IPv6 functionality when talking to other IPv6 nodes located anywhere
 - they get the normal (i.e., degraded) NAT functionality when talking to IPv4 devices
 - methods used to improve NAT functionality (e.g, ALGs, RSIP)
 can be used equally to improve IPv6-IPv4 functionality
- alternative: transport-layer relay or app-layer gateways


Network Address Translation and Protocol Translation (NAT-PT)

IPv6-only devices


NAT-PT

IPv4-only and dual-stack devices


The IPv4 Internet Today

Introducing IPv6 (Simplified View)

Expanding IPv6 (Simplified View)

When?

Standards

- core IPv6 specifications are IETF Draft Standards
 => well-tested & stable
 - IPv6 base spec, ICMPv6, Neighbor Discovery, Multicast Listener Discovery, PMTU Discovery, IPv6-over-Ethernet,...
- other important specs are further behind on the standards track, but in good shape
 - mobile IPv6, header compression, A6 DNS support, IPv6-over-NBMA,...
 - for up-to-date status: playground.sun.com / ipng
- the 3GPP cellular wireless standards are highly likely to mandate IPv6

Implementations

- most IP stack vendors have an implementation at some stage of completeness
 - some are shipping supported product today,
 e.g., 3Com, *BSD, Epilogue, Ericsson/Telebit, IBM, Hitachi, KAME, Nortel,
 Sun, Trumpet
 - others have beta releases now, supported products "soon",
 e.g., Cisco, Compaq, HP, Linux community, Microsoft
 - others known to be implementing, but status unkown (to me),
 e.g., Apple, Bull, Mentat, Novell, SGI

(see playground.sun.com/ipng for most recent status reports)

good attendance at frequent testing events

Deployment

- experimental infrastructure: the 6bone
 - for testing and debugging IPv6 protocols and operations
 - mostly IPv6-over-IPv4 tunnels
 - > 200 sites in 42 countries; mostly universities, network research labs, and IP vendors

Deployment (cont.)

- production infrastructure in support of education and research: the 6ren
 - CAIRN, Canarie, CERNET, Chunahwa Telecom, Dante, ESnet, Internet 2, IPFNET, NTT, Renater, Singren, Sprint, SURFnet, vBNS, WIDE
 - a mixture of native and tunneled paths
 - see www.6ren.net, www.6tap.net
- commercial infrastructure
 - a few ISPs (NTT,IIJ, SURFnet, Trumpet) have announced commercial IPv6 service trials

Deployment (cont.)

- IPv6 address allocation
 - 6bone procedure for test address space
 - regional IP address registries (APNIC, ARIN, RIPE-NCC) for production address space
- deployment assistance
 - ipv6.org: contributed FAQs and other info
- deployment advocacy (a.k.a. marketing)
 - IPv6 Forum: www.ipv6forum.com

Other Sources of Information

books:

```
IPv6, The New Internet Protocol by Christian Huitema (Prentice Hall)
```

Internetworking IPv6 with Cisco Routers by Silvano Gai (McGraw-Hill)

and many more... (14 hits at Amazon.com)

video:

IPv6: the New Internet Protocol by Steve Deering & Craig Mudge (University Video Communications, www.uvc.com)