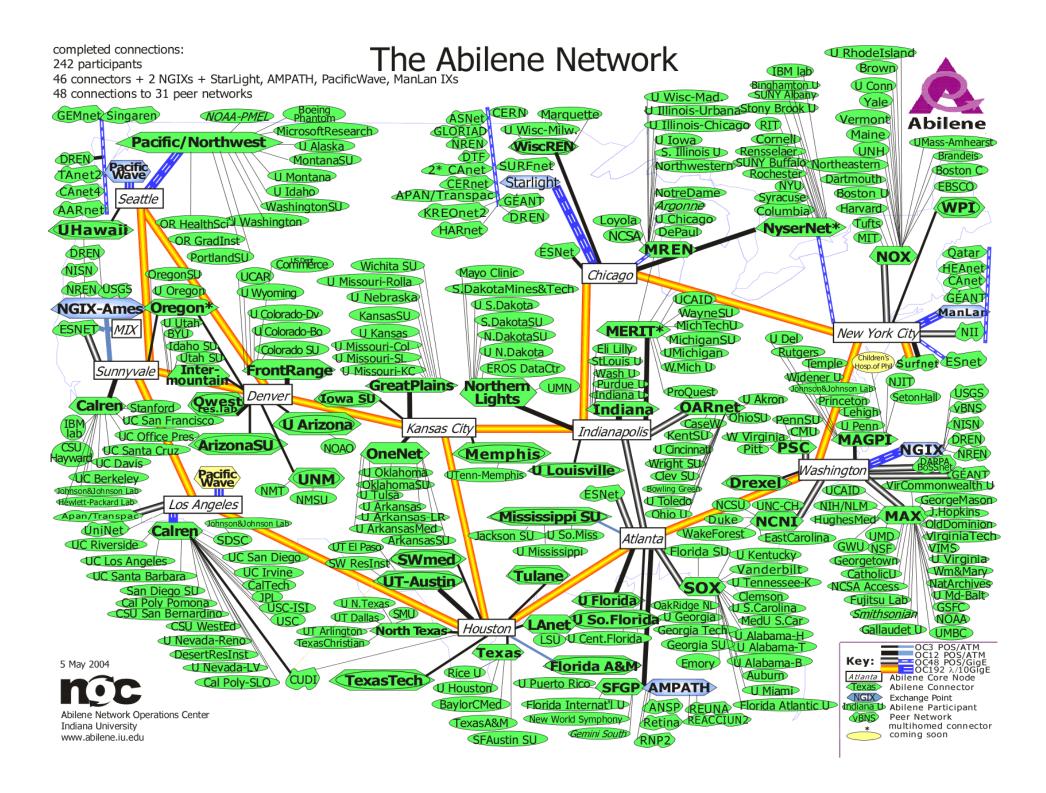
IPv6 in Internet2 ("Abilene")

Brent Sweeny
Abilene NOC at Indiana University
sweeny@indiana.edu

Nanog 31—San Francisco 25 May 2004

Topics

- Internet2="Abilene"; what is Abilene?
- What have we done with IPv6?
- How did we do it?
- How are we helping it along?
- What's missing?
- What problems have we seen?
- What next?

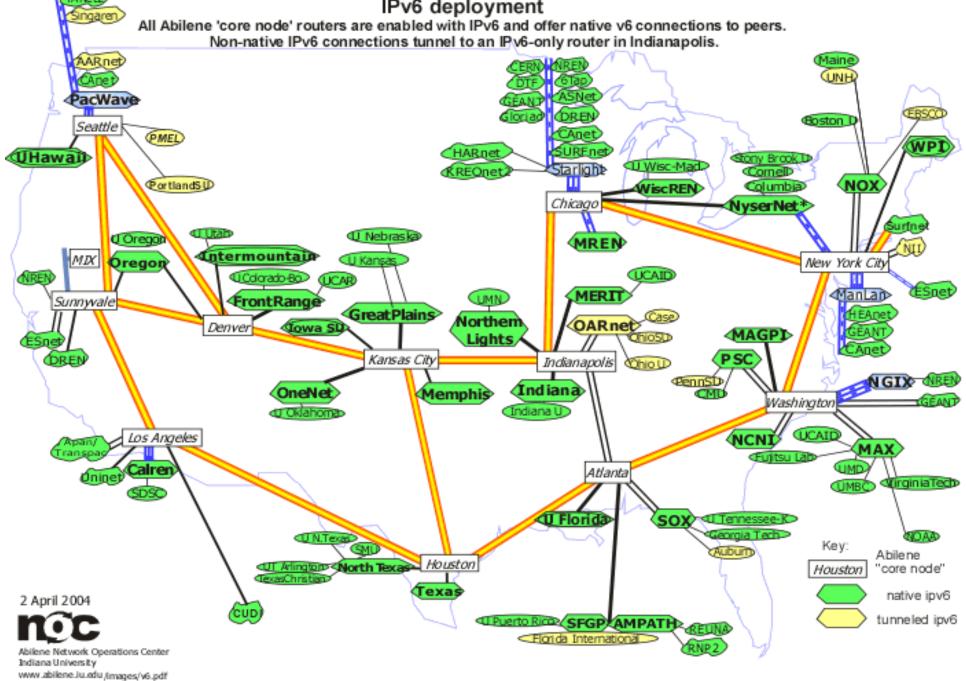

Internet2 network = "Abilene"

What is Abilene?

- Internet2 does more than networks—Abilene is an I2 "project"
- The primary university R&E network in the US
- Abilene is owned by US universities
- Became operational in 1998
- Abilene is operated by Indiana University for Internet2
- National-footprint OC192 backbone with 11 "core" locations

What is Abilene? (continued)

- Ipv4 connections:
 - 46 connections (oc3-oc192/10GE) to 242 member universities + >100 'sponsored' institutions (e.g. Smithsonian, Gemini telescopes, medical centers) + 33 state R&E networks + many 100s of other colleges, universities, K-12s, libraries, labs, etc.
 - □ 'gigapops': regional R&E aggregators, regional networks
 - 6 connections to R&E exchange points: PacificWave (Sttl), NGIX-DC, StarLight (Chi), MaeWest (NGIX-Ames), Ampath (Miami), MANLAN(NYC)
 - 48 connections to 31 peer R&E networks (domestic & foreign)
- Some non-university members (research labs)
- Lots of support for 'advanced protocols'
- No 'commodity-internet' peering except for 'advanced' protocols (multicast, IPv6)

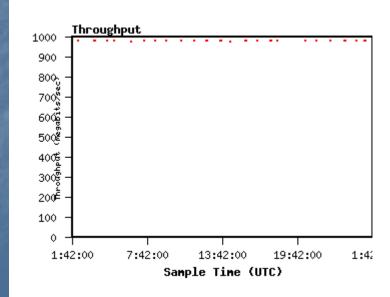

Abilene (Internet2) is not an IPv6-only network.

IPv6 on Abilene

- Native IPv6 on dual-stack routers
 - 2001: Cisco GSR
 - 2002: Juniper T640
 - A few old tunneled connections (~5)
 - v6 on the same path and interface as v4
- S-IS IGP for V4 & V6 (see www.nanog.org/mtg-0306/browning.html)
- Full IPv6 routing table (511 prefixes)
- V6 Connections:
 - 28 (/52) connections to gigapops and exchanges
 - 29 (/48) connections to peer networks
- Small amounts of v6 multicast

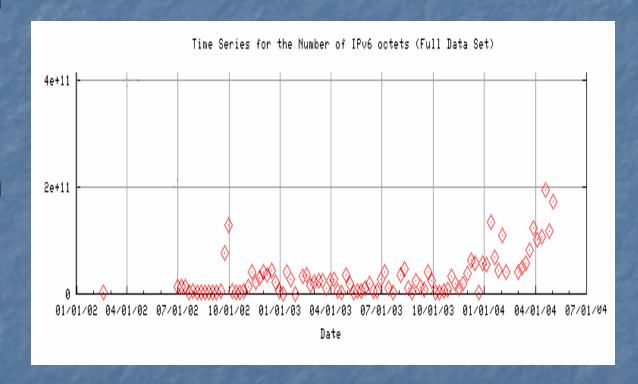
The Abilene Network

IPv6 deployment


Performance

- V6 performance ≈ v4 performance across the backbone and LANs
- Regular ≈1Gbs flows with 1Gb NICs

8-9Gbs flows cross-country and international


(e.g. SCinet)

Example: DC-SNV w/1Gbs NICs (see Internet2 "Observatory")

Growth

- Slow growth in traffic, greater in 2004
- Slow growth in # of prefixes

How are we helping v6 along?

- Infrastructure support: help create an environment where it works very well
- Early adoption: first 6bone, then native
- 'Open' policy for v6
- 6to4 gateways
- Measurement, support
 - "observatory"

Helping (continued)

- Provide addresses to I2 users from I2 /32 block
 - /40 to gigapops, /48 to campuses (no addresses for peer networks)
- Demonstrations that it does work well: performance, functionality
- Education
 - Internet2 working group
 - Conference encouragement; extra publicity for those who jump on bandwagon
 - Basic-configuration "cookbook" on webpage
 - "hands-on" advanced-technology workshops

Internet2 IPv6 hands-on workshops

- 1½-2-day workshop, about 12 conducted so far
- Very low cost
- Regional, convenient for local people
- Intended to bootstrap campuses into use
- Create your own lab v6 network from scratch:
 - Some history & theory, but aggressively practical
 - Router setup
 - Addressing considerations
 - Routing protocols (IGP, EGP) and considerations
 - Oriented toward Cisco and Juniper users
 - Some intro to applications' v6 support
 - Some campus-architecture considerations (e.g. parallel vs dual)
 - Some exposure to tough topics (e.g. multihoming)
- Agenda, slides: I2 IPv6 working group ipv6.internet2.edu

Internet2 IPv6 policy

- AUP-free for IPv6:
 - Any v6 prefix accepted from peers or connectors, except:
 - 'sanity' filters: no default, scoped
 - Prefix ranges: 2001 prefxes not > /48
 - All v6 transit allowed
- Purpose: help bootstrap it
- How long? Until it's well-established
- BGP community to indicate less-desirable paths (tunnels)

What's missing?

- Counting, measurement:
 - No v6 MIB support in routers: we can do throughput
 & latency (via tools/apps), but not packets or bytes
 - So per-interface counts are difficult
 - We're currently using JunOS per-interface firewall filters
- No v6 netflow (implications for meas. & security)
- Multicast: no interdomain solution
 - Single-RP, currently in France
 - Embedded RP will probably solve this
- Multihoming
- No RADB support for v6 (at least from Merit)
 - They're working on it

Problems?

- Besides 'missing' things, very little attributable explicitly to IPv6...
- "It just works!"

Internet2 IPv6 Future

- More exchange-point connections
 - PAIX (bay-area)
 - Pacific Wave (Los Angeles)
- Multicast
- "Ipv6 everywhere by 2006"
 - All connectors
 - All campuses—and pervasively beyond edges

References

- Abilene home: <u>abilene.internet2.edu</u>
- 12 IPv6 WG: jpv6.internet2.edu
- Abilene Observatory: <u>abilene.internet2.edu/observatory/</u>
- Abilene NOC: www.abilene.iu.edu
- I2 Technologies-by-connection summary: <u>abilene.internet2.edu/observatory/connect</u> <u>ion-technologies.html</u>