Revealing Botnet Membership using DNSBL Counter-Intelligence

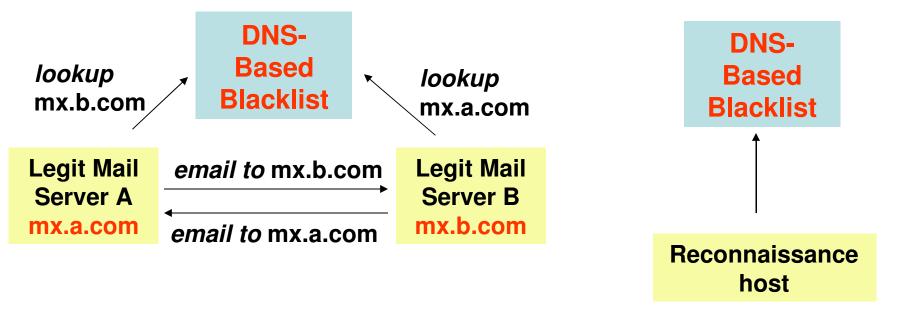
Nick Feamster

Anirudh Ramachandran David Dagon Georgia Tech

Motivation for this work

- Fact: Bot-herds advertise and sell their "clean" bots at a premium
- Insight: If the claims are true, they must be looking up their bots' status in some blacklist!
- Opportunistic Application: Might it be possible to mine DNS Blacklist queries to reveal such reconnaissance activity?

Detecting Reconnaissance

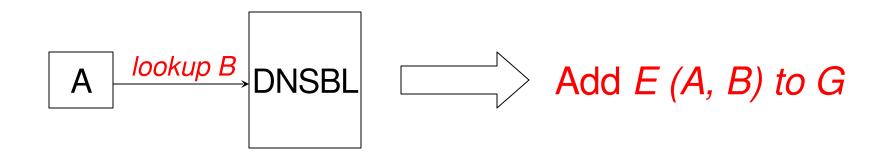

 Key Requirement: Distinguish reconnaissance queries from queries performed by legitimate mail servers

 Our Approach: Develop heuristics based on the spatial and temporal properties of a DNSBL Query Graph

We focus (mostly) on spatial heuristics

Legit Queries vs. Reconnaissance

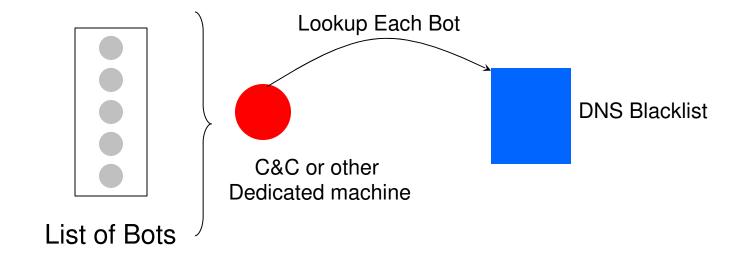
- Legitimate queriers are also the targets of queries
- Reconnaissance queriers are ususally not queried themselves



Measurement Approach

- Log Spamhaus queries
- Construct querier/queried graph
- Prune graph: only nodes in the Bobax trace
- Examine nodes with high out-degree
 - Hypothesis: targets of nodes with high out-degree likely bots

Applying the Spatial Heuristic

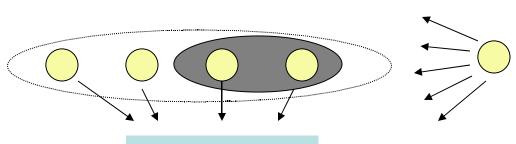

Construct the directed DNSBL Query Graph G

• Extract nodes (and their connected components) with the highest values of the spatial metric λ , where $\lambda = (Out\text{-degree/In-degree})$

Third-Party Reconnaissance

Third-party performs reconnaissance query

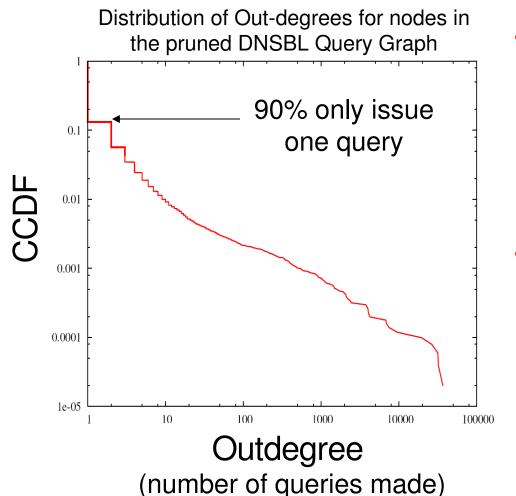
Relatively easy to detect using the spatial metric


Other Techniques

- Self-Reconnaissance
 - Each bot looks itself up
 - This should not happen normally (at least, not enmasse) – thus, easy to detect
- Distributed Reconnaissance
 - Bots perform lookups for other bots
 - Complex to deploy and operate
 - We witnessed evidence of this technique

Distributed Reconnaissance

- The botmaster, on behalf of the bots
- The bots, on behalf of themselves
- The bots, on behalf of each other


ASN of Node	Out-degree
Everyone's Internet (AS 13749)	36,875
IQuest (AS 7332)	32,159
UUNet (AS 701)	31,682
UPC Broadband (AS 6830)	26,502
E-xpedient (AS 17054)	19,530

Known bobax drone!

Spam Sinkhole

Prevalence of Reconnaissance

- Long tail Bot-herds might already have the capability to distribute reconnaissance among many bots
- A few high out-degree nodes – multiple vantage points might help identify "prominent players"

Implications

Bad news! Bot reconnaissance techniques are pretty advanced

- Good news, too
 - Can use these spatial dependencies to opportunistically identify new bots

Opportunistic Bot Detection

- Many sources of data for bootstrapping passive botnet detection (i.e., to compile a 'seed' list) like
 - SMTP/Spam logs,
 - Portscan logs from Intrusion Detection Systems
- Knowledge of botnet membership → ability to stop attacks closer to the source
- Multiple vantage points increase confidence and reduce risk of false positives.

Some Problems with Counter-Intel

- Constructing the query graph is intensive
 - Computationally
 - Storage-wise
- Initially pruning the graph with IP addresses of known suspects (e.g., spammers) could help