
1

PHAS: A Prefix Hijack Alert System

http://netsec.cs.colostate.edu/phas/

Dan Massey and Yan Chen
Colorado State University

Mohit Lad, Lixia Zhang
UCLA

Beichuan Zhang
University of Arizona

2

Outline

• Problem and Observations on Solution Space

• RouteViews Based PHAS Service

– Overview of how it works and what it reports

– How you can use PHAS now

• Customizing PHAS To Meet Site Requirements

– How to incorporate local data and detection policies

3

BGP Origin Hijacking Problem

• BGP Prefix Origin Hijacking
– Faulty/Malicious AS announces prefix it doesn’t own

– Some sites adopt path and route packets to wrong AS

– Ex: AS 52 originates to path to 129.82.0.0/16

• If such a hijack does occur, then
– Some routers select path originating from AS 52

– Actual origin for 129.82.0.0/16 is AS 12145

– The router is unlikely to know AS 52 is invalid
• (and don’t add that rule because 129.82/16 may change policy)

– Legitimate AS 12145 unlikely to see the false path

4

Related Hijacking Problems

• SubAllocation Hijacking
– More specific prefix announced by non-owner

– Packets follow longer match to non-owner

– Ex: hijack part of 129.82/16 by announcing 129.82.138/24

• Intermediate Path Hijacking (Harder)
– Announce false links in the AS path to prefix

– Packets follow AS path that differs from actual path

– Note prefix owner should know second to last AS in path

• BGP routers may see these “bad” events occur, but
– Can’t easily determine validity without input from owner

– Owner unlikely to see the “bad” routes

5

Detecting Hijacks Requires

PHAS connects data with prefix owners

1. Ability to see the “bad” information
BGP Data Collectors (RouteViews and RIPE)

2. Ability to distinguish between “good” and “bad”
information

Prefix owner knows legitimate origin,
suballocations, and last hop.

3. Incentive to fix the problem if one is found
Prefix owner is affected directly

6

RouteViews Based PHAS
• Step 1:

Monitor RouteViews BGP Tables and Updates in (near) Real-Time

• Step 2:

Keep Database of Origins Used to Reach Each Prefix

• Step 3:

Report Any Change in Origins Used to Reach the Prefix

• Step 4:

Owner Applies Local Filter Rules to Determine Significance

Similarly, PHAS tracks changes in SubAllocations
and Last Hops (AS adjacent to origin AS)

7

PHAS Events: Single Peer View
• Monitor a Single Peer’s Route To Every Prefix

– Use initial RIB to determine origin AS for each reachable prefix
– Monitor AS path in updates and track any change in origin.

– Log an EVENT if peer changes origin used to reach prefix

• Ex: Monitor Peer 12.0.1.63’s Route to 129.82/16
– Initial route table reports AS path ends in AS 12145

– Update reports change to new AS path ending AS 52
– PHAS logs an origin change event (AS 12145 => AS 52)

• Provides Base PHAS Data, But Don’t Report Events
– Vast majority of updates do not change the origin AS

– But remainder is still a very high volume of event changes.
• Peer switches between origin AS for a multi-homed prefix
• Peer loses and regains route to a prefix

8

Instant Sets: Multiple Peer View

• Instant Origin Set:
combined set of origins derived from all peers

• Example Origin Set for Prefix 129.82.0.0/16
– 12.0.1.63 reaches prefix via origin AS 12145

– 206.186.255.223 reaches prefix via AS 52

– 144.228.241.81 reaches prefix via AS 12145

– Instant Origin Set = {12145, 52}

• Instant Set Changes Less Frequently
– 144.228.241.81 changes to AS 52

– Instant Origin Set Remains {12145, 52}

• But Instant Origin Set Still Too Dynamic For Reporting

9

PHAS Notifications
• Instant Origin Set May Still Change Dramatically

– Most prefixes see no changes in instant origin set

– Some prefixes see thousands changes per day

– Origin oscillation results in origin sets of:

{12145}, {12145,52}, {52}, {12145, 52}, {12145}, ...

• Solution: Apply Basic Dampening To Set

– Always immediately report any new origin AS (may be hijack)

– Increase prefix penalty for each set change

– Based on penalty, delay removing an origin from the set

– Dampening removes oscillation and set changes become:

{12145}, {12145, 52} and remains stable

10

Resulting PHAS System

Web: http://netsec.cs.colostate.edu/phas/

11

PHAS-RouteViews Services
• Using RouteViews Data to Track Your Prefix

– Origins used to reach your prefix and any origin changes

– Suballocations below your prefix and any changes

– Last Hop used to reach your prefix and any changes

• PHAS Query Reports Changes in Last 24 Hours

– Use Query Link to check on your prefix now

• PHAS Email Sends Changes in Near Real-Time
– Use Subscribe Link to request email notifications

• PHAS Archive Provides Longer Term Data
– Useful for pulling more detailed data if an event occurs

12

Customizing PHAS Notifications
• PHAS Delivers Text Data in a Simple Format:

• Readable By People, But Intended for Scripts
Script receives notifications and applies local policies

SEQUENCE_NUMBER: 1160417987
TYPE: origin
BGP-UPDATE-TIME: 1160396231
PHAS-DETECT-TIME: 1160414387
PHAS-NOTIFY-TIME: 1160417987
PREFIX: 60.253.29.0/24
SET: 30533
GAINED:
LOST: 33697

13

Sample PHAS Notification Filters
• Fixed Set Filtering

– Configure filter with list of valid origins

– Filter discards any change within the valid origin set

– Effective if origin set is well known and relatively static

– Note this is similar to RIPE MyASN functionality

• Policy Database Filtering

– Configure filter with policy database (pick your favorite)

– Filter discards any change within registered origin data

– Effective if origin set is not directly known, but some other
database is trusted

• Planned Support For Common Filters Such as Above

– Relatively simple to build your own custom filters at any time

14

More Aggressive Customization
• PHAS Designed Around Three Components:

PHAS_INPUT, PHAS_TRACKER, PHAS_NOTIFY

• Primary Component is PHAS_TRACKER

– Expects to receive MRT format messages via TCP

– Calculates events and instant sets

– Applies dampening rules based on configuration settings

– Writes update, instant set, and notification logs

– Sends notification messages via TCP

• Helper components provide input and process notification

– You select the input data

– You determine what to do with the notify messages

15

Customizing PHAS Input
• PHAS Works With Your Data Source

– Write (or request PHAS team) build PHAS_INPUT

– PHAS_INPUT reads your data, places data in MRT
format, and sends via TCP to PHAS_TRACKER

• PHAS Input Example

– PHAS_INPUT_RV obtains data from RouteViews
and sends MRT format data to PHAS_TRACKER

– Building PHAS_INPUT_RIPE

– Working an ISP to build PHAS_INPUT_ISP that
uses their private monitoring system

16

Customizing PHAS Notifications
• PHAS Provides Your Notification Format

– Write (or request PHAS team) build PHAS_NOTIFY

– PHAS_NOTIFY accepts notifications from PHAS_TRACKER
via TCP and takes the desired actions

• PHAS Notification Example

– PHAS_NOTIFY_EMAIL accepts notifications from

PHAS_TRACKER, compares notifications against an email list
and generates email messages for the interested users

– Working an ISP to build PHAS_NOTIFY_ISP that applies local
rules and forwards notification into ISPs private ops system

17

PHAS Web Current Status
• Use PHAS Website to Query Your Prefix

– Website reports last 24 hours of notifications

– Query link was added to main page in July

• Register An Email Address To Receive Notifications

– First try a query to see what notifications you might get

– If you want this data, subscribe your email address

– Email subscribe link added in past few weeks

– No known issues in early tests…

18

PHAS Work in Progress
• Developing and Releasing Email Notification Filters

– Fixed origin, suballocation, and last lop data

– Compare PHAS notifications to known databases

• Better Management for Large-Scale Users

– Code currently working on 190K prefixes

– Interface works well for sites with small number of prefixes

– Interface not optimized for user with hundreds of prefixes

• Release PHAS_TRACKER Code

– Release notification filters to link in policy databases

– Hardening PHAS_TRACKER for open source public release

– Move PHAS from research labs to RouteViews

• Seeking feedback on current system and future features

19

http://netsec.cs.colostate.edu/phas/

