

PHAS: A Prefix Hijack Alert System

<http://netsec.cs.colostate.edu/phas/>

Dan Massey and Yan Chen
Colorado State University

Mohit Lad, Lixia Zhang
UCLA

Beichuan Zhang
University of Arizona

Outline

- Problem and Observations on Solution Space
- RouteViews Based PHAS Service
 - Overview of how it works and what it reports
 - How you can use PHAS now
- Customizing PHAS To Meet Site Requirements
 - How to incorporate local data and detection policies

BGP Origin Hijacking Problem

- BGP Prefix Origin Hijacking
 - Faulty/Malicious AS announces prefix it doesn't own
 - Some sites adopt path and route packets to wrong AS
 - Ex: **AS 52** originates to path to 129.82.0.0/16
- If such a hijack does occur, then
 - Some routers select path originating from **AS 52**
 - Actual origin for 129.82.0.0/16 is **AS 12145**
 - The router is unlikely to know **AS 52** is invalid
 - (and don't add that rule because 129.82/16 may change policy)
 - Legitimate **AS 12145** unlikely to see the false path

Related Hijacking Problems

- **SubAllocation Hijacking**
 - More specific prefix announced by non-owner
 - Packets follow longer match to non-owner
 - Ex: hijack part of 129.82/16 by announcing 129.82.138/24
- **Intermediate Path Hijacking (Harder)**
 - Announce false links in the AS path to prefix
 - Packets follow AS path that differs from actual path
 - *Note prefix owner should know second to last AS in path*
- BGP routers may see these “bad” events occur, but
 - Can’t easily determine validity without input from owner
 - Owner unlikely to see the “bad” routes

Detecting Hijacks Requires

1. Ability to *see* the “bad” information
BGP Data Collectors (RouteViews and RIPE)
2. Ability to *distinguish* between “good” and “bad” information
Prefix owner knows legitimate origin, suballocations, and last hop.
3. Incentive to *fix* the problem if one is found
Prefix owner is affected directly

PHAS connects data with prefix owners

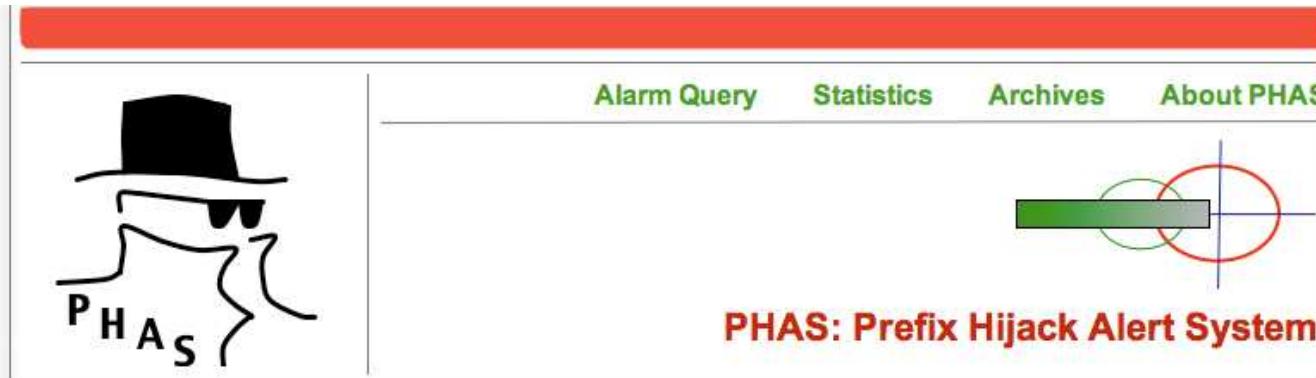
RouteViews Based PHAS

- Step 1:
Monitor RouteViews BGP Tables and Updates in (near) Real-Time
- Step 2:
Keep Database of Origins Used to Reach Each Prefix
- Step 3:
Report Any Change in Origins Used to Reach the Prefix
- Step 4:
Owner Applies Local Filter Rules to Determine Significance

Similarly, PHAS tracks changes in SubAllocations and Last Hops (AS adjacent to origin AS)

PHAS Events: Single Peer View

- Monitor a Single Peer's Route To Every Prefix
 - Use initial RIB to determine origin AS for each reachable prefix
 - Monitor AS path in updates and track any change in origin.
 - Log an EVENT if peer changes origin used to reach prefix
- Ex: Monitor Peer 12.0.1.63's Route to 129.82/16
 - Initial route table reports AS path ends in AS 12145
 - Update reports change to new AS path ending AS 52
 - PHAS logs an origin change event (AS 12145 => AS 52)
- Provides Base PHAS Data, But Don't Report Events
 - Vast majority of updates do not change the origin AS
 - But remainder is still a very high volume of event changes.
 - Peer switches between origin AS for a multi-homed prefix
 - Peer loses and regains route to a prefix


Instant Sets: Multiple Peer View

- Instant Origin Set:
combined set of origins derived from all peers
- Example Origin Set for Prefix 129.82.0.0/16
 - 12.0.1.63 reaches prefix via origin AS 12145
 - 206.186.255.223 reaches prefix via AS 52
 - 144.228.241.81 reaches prefix via AS 12145
 - Instant Origin Set = {12145, 52}
- Instant Set Changes Less Frequently
 - 144.228.241.81 changes to AS 52
 - Instant Origin Set Remains {12145, 52}
- But Instant Origin Set Still Too Dynamic For Reporting

PHAS Notifications

- Instant Origin Set May Still Change Dramatically
 - Most prefixes see no changes in instant origin set
 - Some prefixes see thousands changes per day
 - Origin oscillation results in origin sets of:
 $\{12145\}$, $\{12145, 52\}$, $\{52\}$, $\{12145, 52\}$, $\{12145\}$, ...
- Solution: Apply Basic Dampening To Set
 - Always immediately report any new origin AS (may be hijack)
 - Increase prefix penalty for each set change
 - Based on penalty, delay **removing** an origin from the set
 - Dampening removes oscillation and set changes become:
 $\{12145\}$, $\{12145, 52\}$ and remains stable

Resulting PHAS System

Alarm Query Statistics Archives About PHAS

PHAS: Prefix Hijack Alert System

Period: 2006.08.01 00:00:00 to 2006.08.01 23:59:59 (UTC)

Total Alarms: 46547
Total prefixes involving alarms: 19474
Total prefixes observed till 2006.08.01 23:59:59 (UTC): 214389

Origin

Alarms: 5364
Prefixes involving alarms: 2609
Prefix with most alarms: 60.253.89.0/24 with 17 alarm(s) .
Alarm frequency for each prefix:

Alarms	1	2	3	4	5~10	11~20	21~30	>30
Prefixes	1171	1014	196	76	117	35	0	0

Web: <http://netsec.cs.colostate.edu/phas/>

PHAS-RouteViews Services

- **Using RouteViews Data to Track Your Prefix**
 - Origins used to reach your prefix and any origin changes
 - Suballocations below your prefix and any changes
 - Last Hop used to reach your prefix and any changes
- PHAS Query Reports Changes in Last 24 Hours
 - *Use Query Link to check on your prefix now*
- PHAS Email Sends Changes in Near Real-Time
 - *Use Subscribe Link to request email notifications*
- PHAS Archive Provides Longer Term Data
 - Useful for pulling more detailed data if an event occurs

Customizing PHAS Notifications

- PHAS Delivers Text Data in a Simple Format:

```
SEQUENCE_NUMBER: 1160417987
TYPE: origin
BGP-UPDATE-TIME: 1160396231
PHAS-DETECT-TIME: 1160414387
PHAS-NOTIFY-TIME: 1160417987
PREFIX: 60.253.29.0/24
SET: 30533
GAINED:
LOST: 33697
```

- Readable By People, **But Intended for Scripts**

Script receives notifications and applies local policies

Sample PHAS Notification Filters

- Fixed Set Filtering
 - Configure filter with list of valid origins
 - Filter discards any change within the valid origin set
 - Effective if origin set is well known and relatively static
 - Note this is similar to RIPE MyASN functionality
- Policy Database Filtering
 - Configure filter with policy database (pick your favorite)
 - Filter discards any change within registered origin data
 - Effective if origin set is not directly known, but some other database is trusted
- Planned Support For Common Filters Such as Above
 - Relatively simple to build your own custom filters at any time

More Aggressive Customization

- PHAS Designed Around Three Components:
PHAS_INPUT, **PHAS_TRACKER**, PHAS_NOTIFY
- Primary Component is PHAS_TRACKER
 - Expects to receive MRT format messages via TCP
 - Calculates events and instant sets
 - Applies dampening rules based on configuration settings
 - Writes update, instant set, and notification logs
 - Sends notification messages via TCP
- Helper components provide input and process notification
 - You select the input data
 - You determine what to do with the notify messages

Customizing PHAS Input

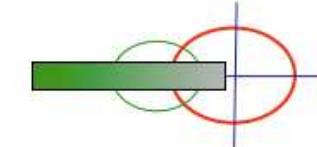
- PHAS Works With Your Data Source
 - Write (or request PHAS team) build PHAS_INPUT
 - PHAS_INPUT reads your data, places data in MRT format, and sends via TCP to PHAS_TRACKER
- PHAS Input Example
 - PHAS_INPUT_RV obtains data from RouteViews and sends MRT format data to PHAS_TRACKER
 - Building PHAS_INPUT_RIPE
 - Working an ISP to build PHAS_INPUT_ISP that uses their private monitoring system

Customizing PHAS Notifications

- PHAS Provides Your Notification Format
 - Write (or request PHAS team) build PHAS_NOTIFY
 - PHAS_NOTIFY accepts notifications from PHAS_TRACKER via TCP and takes the desired actions
- PHAS Notification Example
 - PHAS_NOTIFY_EMAIL accepts notifications from PHAS_TRACKER, compares notifications against an email list and generates email messages for the interested users
 - Working an ISP to build PHAS_NOTIFY_ISP that applies local rules and forwards notification into ISPs private ops system

PHAS Web Current Status

- Use PHAS Website to Query Your Prefix
 - Website reports last 24 hours of notifications
 - Query link was added to main page in July
- Register An Email Address To Receive Notifications
 - First try a query to see what notifications you might get
 - If you want this data, subscribe your email address
 - Email subscribe link added in past few weeks
 - No known issues in early tests...


PHAS Work in Progress

- Developing and Releasing Email Notification Filters
 - Fixed origin, suballocation, and last hop data
 - Compare PHAS notifications to known databases
- Better Management for Large-Scale Users
 - Code currently working on 190K prefixes
 - Interface works well for sites with small number of prefixes
 - Interface not optimized for user with hundreds of prefixes
- Release PHAS_TRACKER Code
 - Release notification filters to link in policy databases
 - Hardening PHAS_TRACKER for open source public release
 - Move PHAS from research labs to RouteViews
- Seeking feedback on current system and future features

<http://netsec.cs.colostate.edu/phas/>

Alarm Query Statistics Archives About PHAS

PHAS: Prefix Hijack Alert System

Period: 2006.08.01 00:00:00 to 2006.08.01 23:59:59 (UTC)

Total Alarms: 46547
Total prefixes involving alarms: 19474
Total prefixes observed till 2006.08.01 23:59:59 (UTC): 214389

Origin

Alarms: 5364
Prefixes involving alarms: 2609
Prefix with most alarms: 60.253.89.0/24 with 17 alarm(s) .
Alarm frequency for each prefix:

Alarms	1	2	3	4	5~10	11~20	21~30	>30
Prefixes	1171	1014	196	76	117	35	0	0