

Multi-Provider Ethernet Service Delivery

Ananda Rajagopal
Product Manager, Service Provider Solutions
Foundry Networks

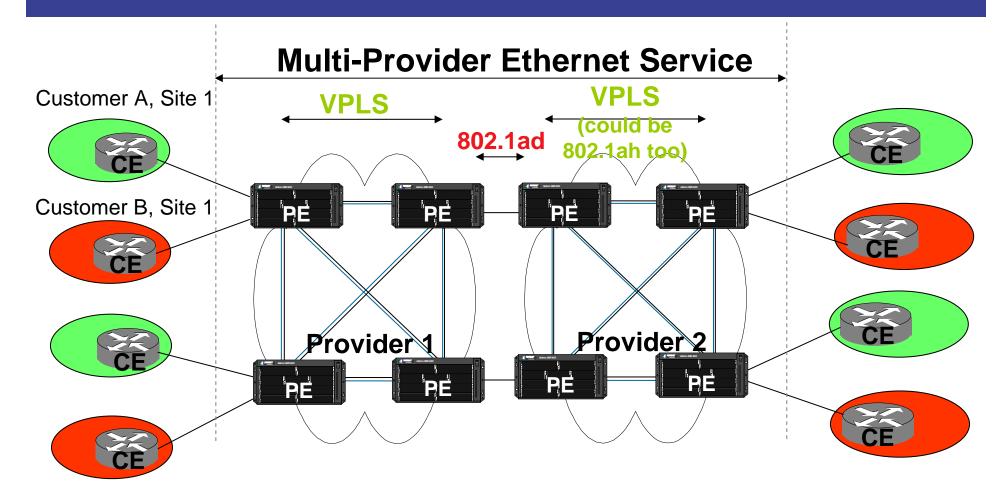
THE POWER OF PERFORMANCE

0

Agenda

- Multi-Provider Ethernet Service Delivery
- Ethernet Service Delivery Today
- A Proposed Model
- **Comparison with other approaches
- Benefits
- Challenges
- *Q&A

Multi-Provider Ethernet Service Delivery


Is There a Need?

- Major drivers for large-scale Ethernet Service deployment across multiple provider networks:
 - Increasing globalization of customers
 - Limited reach of providers: lots of local providers more common than global titans
 - Need to simplify inter-provider hand-offs
 - Business continuity reasons require enterprises to connect critical sites to a second provider
 - Integration of networks after acquisition
 - The Dow 12000 Era!
 - Multi-provider service delivery is/was common in Frame Relay and ATM deployment
 - Customers exploring Ethernet service would have similar expectations

Ethernet Service Delivery Today

- Predominantly point-to-point (E-LINE)
- Multi-point services (E-LAN) delivered as "Transparent LAN Services" (TLS)
 - Limited scalability of 4k VLANs
 - Complexity in management
 - VPLS picking up
- Fast-growing market; yet small compared to alternatives
 - Majority of services continued to be leased line, FR or ATM
- Geographic coverage continues to be the major challenge and obstacle to increasing adoption of Ethernet service. Obstacles include:
 - Reach of fiber
 - Reach of the provider

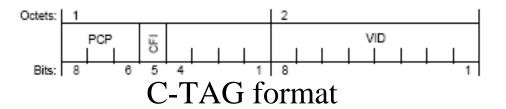
A Proposed Model

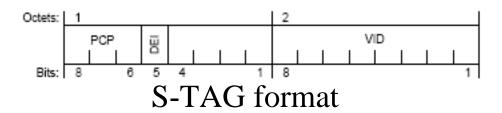
CE: Customer Edge

PE: Provider Edge

The Model in Words ...

- Each provider responsible for its network and for "simple" hand-offs to the adjacent provider's network
- Each provider independently chooses the appropriate technology to transport Ethernet service over that domain (e.g. VPLS or VPWS, 802.1ah, L2TPv3 etc)
- # Hand-offs to other provider are done using 802.1ad as an E-NNI (External Network-Network Interface)
 - S-VID translation is used to translate the service instance ID if required
 - <S-VID + C-VID> mapping to the partner provider's ELINE or ELAN segment may also be possible


Role of "Boundary" Nodes


- Packets from neighboring provider network:
 - Map the 802.1ad packets to the appropriate tunnel in the provider domain
 - -E.g.:
 - Map 802.1ad to a VPLS instance
 - Encapsulate 802.1ad frame within an 802.1ah frame
- Packets going to neighboring provider network:
 - Terminate the local tunnel
 - Encapsulate in 802.1ad and send to neighboring provider

802.1ad Frame Format

DMAC SMAC 0x88a8 S-TAG 0x8100 C-TAG Payload

Tagged frame format

Traffic Engineering and QoS

- Each provider network determines the best path within that network
- Optimized within each domain
- QoS is honored within each provider network
- At inter-provider boundaries, EXP<->802.1ad PCP mappings are done to preserve end-to-end QoS

Redundancy

- Resiliency mechanisms used by each provider independent of what other providers may be doing
 - E.g. MPLS Fast Re-Route (FRR) if VPLS/EoMPLS is in use within a provider's network
- Dual homing may be used for the providerprovider interconnect for inter-provider resiliency

Provisioning

- A provider just needs to:
 - Know the S-VID of the partner provider
 - Submit a request to the partner provider:
 - Partner provider's operations staff maps that S-VID/C-VID combination to a L2-VPN instance internal to their network.
- Wholesaling is an option
 - Do not care about the C-VID; S-VID acts as a "tunnel" that is transported across Provider B's network
 - In this case, "S-VLAN Bridge" functionality of 802.1ad (i.e. no C-VLAN component) is all that is required
 - Maybe simpler to manage based on traffic patterns
- Existing provisioning systems used by the provider can continue to be used

Troubleshooting

- Troubleshoot a reported incident within a provider domain first
 - Can I reach the endpoint of this service instance within my provider domain?
 - Within the domain: OAM utilities such as LSP ping/802.1ag etc can continue to be used to troubleshoot the L2-VPN instance
- Troubleshooting SLA violations would require more cooperation among the providers. Examples:
 - Round-trip delay exceeded
 - Connectivity loss for end-to-end service

Comparison With Other Approaches

- # H-VPLS (with spoke VLL)
 - Expects that different provider networks through which the EVC is delivered all support VPLS
- Multi-segment pseudo-wire (MS-PW)
 - Still at the conceptual stage in IETF
 - Little vendor support today
 - Suitable for very large-scale deployments
 - Facilitates interconnection of different PW types
 - Method proposed in this presentation subset of MS-PW
 - Inter-Provider Switching Using Attachment Circuits

Benefits of This Approach

- # Hierarchical solution to offering multi-provider services
 - Hierarchy aligned with organizational boundaries
- Uses technologies that are already standardized / well-known
 - 802.1ad ratified earlier this year
 - Avoids vendor lock-in and gives providers a range of options to choose from
- Technology used in Provider A's network independent of what is used in Provider B's network
 - E.g. Provider B may use 802.1ah instead of VPLS
 - What is important is the hand-off

Challenges (1)

Inter-provider relationships

- Who "owns" the customer?
- Customer owned by the provider with whom first contact was made?
- Ownership of geographical regions?
- Revenue-sharing arrangements based on above criteria
 - Other thoughts?

Challenges (2)

**Customer (end-user) ownership

- Provisioning
 - Should provisioning systems of providers be integrated to simplify end-to-end provisioning?
- Billing and accounting
- SLA guarantees
 - Certainly not trivial!
- Troubleshooting an end-customer outage
 - Who takes responsibility for resolution?
 - Provider who sends the bill to the customer!

Thank You!