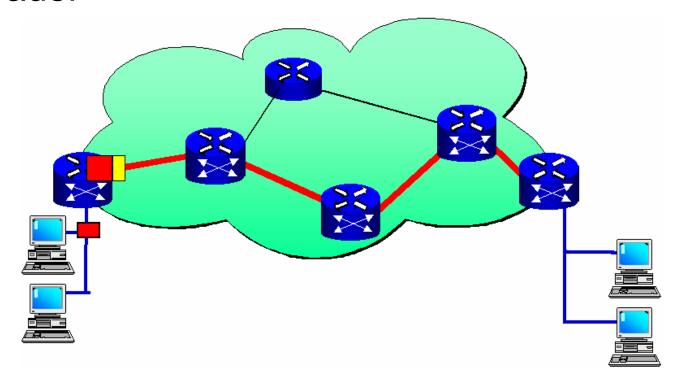


Delivering the Digital Lifestyle™

MPLS In Operation

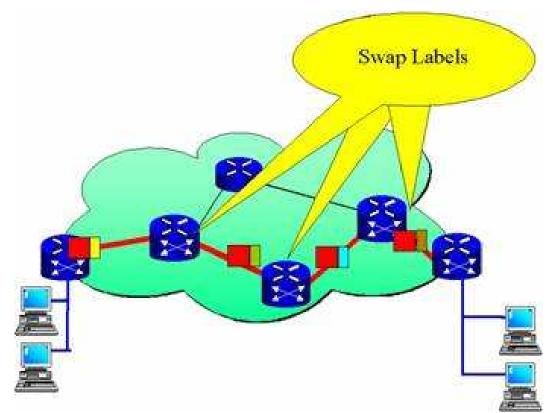
NANOG 39 Toronto February 7 2007

Overview


- What is MPLS?
- Why use Tunnels?
- Why use MPLS?
- Why use RSVP?
- Head-End Placement
- Online vs Offline Calculation
- Summary

MPLS Defined

- Multiple Protocol Label Switching
 - Packets are switched through a network through the cunning use of labels
 - All MPLS enabled routers have forwarding databases that contain a list of all the LSPs (Label Switched Paths (tunnels)) passing through the router, what label and interface a packet should come in on, and what label and interface it should send the packet out on


MPLS Forwarding

 An LER (Label Edge Router) determines that the next hop for a prefix is a tunnel and looks up the appropriate label to insert into the header

MPLS Forwarding

 An LSR (Label Switch Router) swaps the label and forwards the packet out the predetermined interface

Benefits of Tunnel Usage

- Accounting
 - How much traffic does your network have between Hong Kong and London?
- Traffic Awareness
 - Helpful when tracking down where bursts of traffic are sourced from or destined to (either during failure or DOS)

Benefits of Tunnel Usage

- Selective Traffic Engineering
 - Ability to move just a subset of traffic instead of all traffic to/from a particular path
- Loose vs Strict Explicit Hops
 - Ability to route traffic to its destination through a specific router or interface or along a specific path
 - Useful for SRLG aware tools

Benefits of Tunnel Usage

Capacity Planning

- Poor man's netflow
 - e.g. Peer loses a remote backbone circuit and both sides realize how much traffic is being exchanged in a suboptimal location. New peering established that saves resources and improves performace for both networks.
- Other Protocol Transport
 - VolP
 - VPN
 - IPV6
 - No need to ipv6 enable the actual core

Drawbacks of Tunnel Usage

- More Complication
 - Routers need to run more protocols, have more moving parts (KISS this!)
- More Overhead
 - Routers need beefier CPUs, more RAM
 - RP upgrades
 - Staff Education
- Possible Disconnect Between Data vs Control Plane

TTL Propagation?

- no-propagate-ttl / no tag-switching ip propagate-ttl
 - Allow your operations to troubleshoot network issues instead of other companies' operations staffs
 - Hide core network events
- MPLS ping
- TCP Benefit of Fewer Hops
- Marketing advantage of fewer hops

Benefits of MPLS

- Handle increased size of edge capacity vs backbone capacity
 - Backbone used to have more capacity than what was being sold on the edge, but it's very common to have 10G edge ports alongside 10G backbone circuits
- Defer Upgrade Costs
 - Breathing room to implement upgrades while network is running hot
 - Use excess capacity in non-direct paths
- Allow Different QoS With Labels

Drawbacks of MPLS

- Asymmetrical Data Plane
 - Return path could be wildly different from forward path
 - IGP metrics help prevent most wackiness
 - More of something to be aware of than an actual drawback.
 - Most traffic is asymmetrical anyway.
- Blackholing of Traffic
 - All data in tunnel is lost when it breaks

Benefits of RSVP-TE

- Control Traffic Levels
 - Networks often have smaller backbone circuits in certain areas of their footprint.
 - e.g. NA company expanding in EU
- Usage of Uneven Parallel Circuits
 - Allows for quick bandwidth addition in a pinch
- Link Coloring
 - Only allow certain traffic to use particular circuits

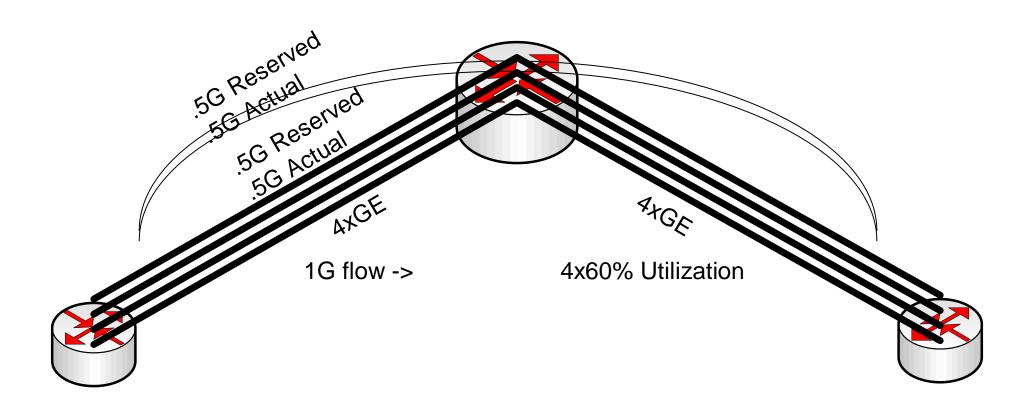
Benefits of RSVP-TE

- Prioritization Of Traffic
 - Allow VoIP or VPN traffic priority on available network resources
- More resilient error detection (polling as well as message flooding)

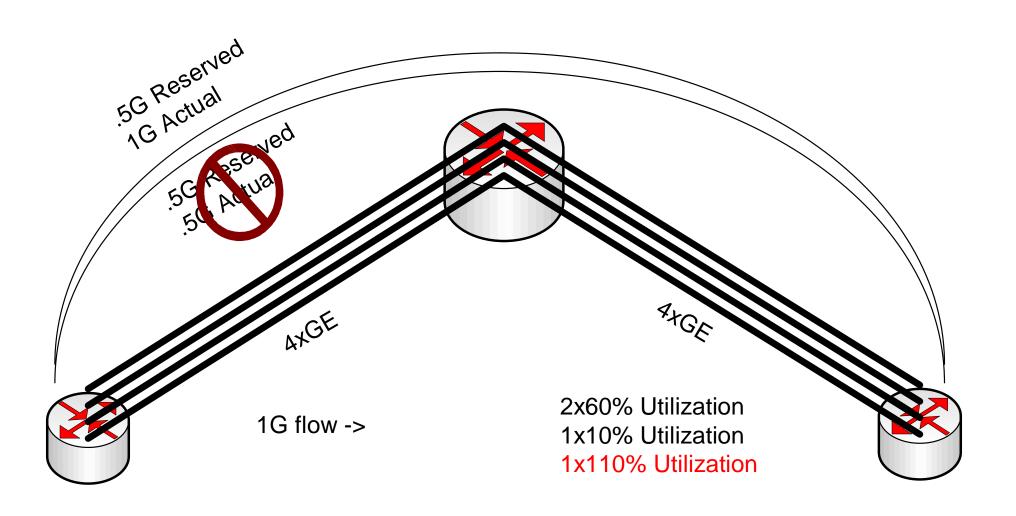
Drawbacks of RSVP-TE

More State

- All routers need to be aware of available bandwidth of all interfaces of all other routers
- Beefier hardware is needed (multiplier of drawback of tunneling in general)
- Traffic Crunch
 - When a tunnel fails, the routing control that is being counted on is not there


Vendor RSVP-TE Quirks

- Cisco
 - 15% until 90%, then 95, 96, 97, 98, 99
- Juniper
 - 10% at a time all the way to 100
 - Creates a problem after a circuit passes 90% utilization because the router won't signal to the rest of the network that it's nearing exhaustion
 - Configurable, but only by percentage, no granularity as reservations near maximum


Handling Larger Flows

- What happens when your demands increase dramatically, but your budget hasn't?
 - Allow your tunnels to keep growing unchecked
 - Convince your budget owner that you need millions of dollars of hardware upgrades immediately
 - Split demands into parallel tunnels

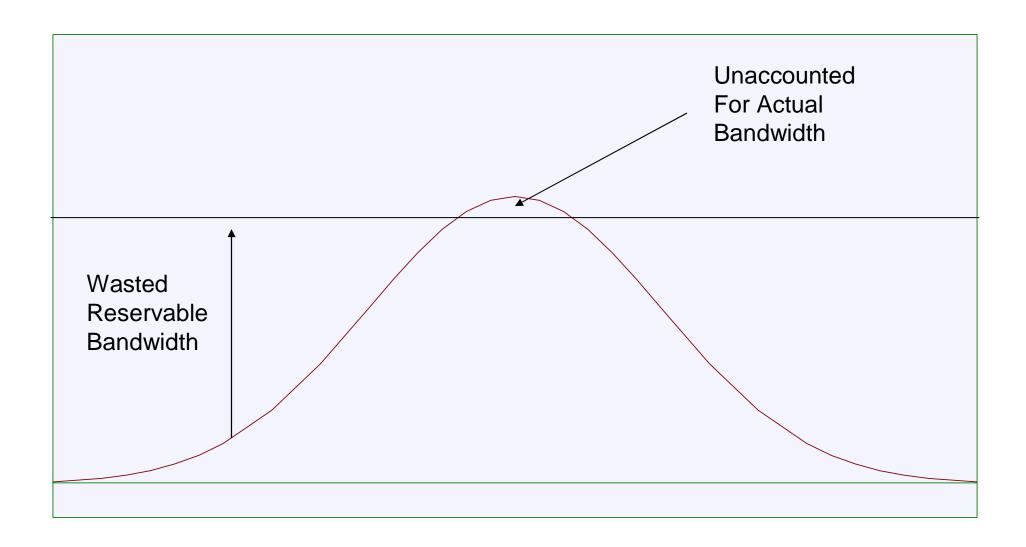
Parallel Tunnel Complications

Parallel Tunnel Complications

Tunnel Head-End Placement

- Benefits On Core
 - Fewer Tunnels
 - 100 devices require 9,900 tunnels according to N*(N-1) rule
 - Dumber Hardware For Edge
 - Cheaper aggregation devices that don't need to run as many protocols

Tunnel Head-End Placement

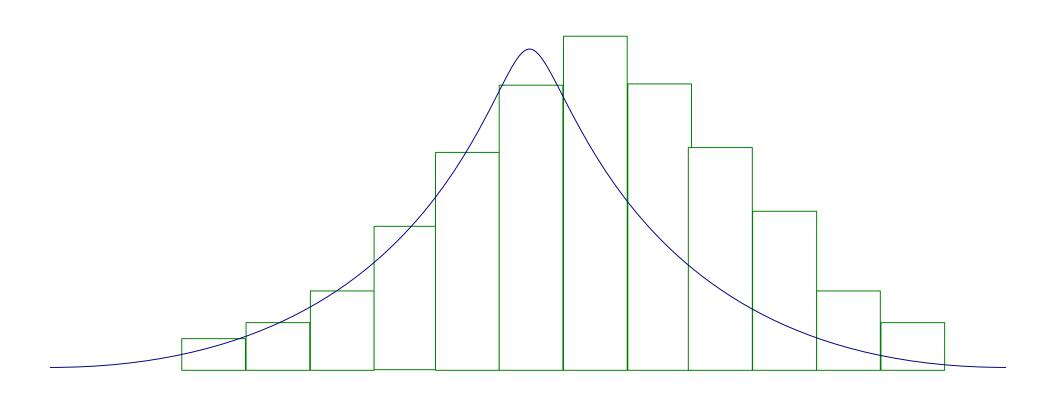

- Benefits On Edge
 - Better Accounting/Control
 - Traffic can be viewed from router to router instead of pop to pop
 - Full utilization of backbone uplinks
 - Less "Slosh"
 - Traffic won't bounce from uplink to uplink and tunnel to tunnel

Offline Calculation

Benefits

- Little/No Recalculation on Head-Ends
- Network knows what it needs
- Pathing is fairly constant
- Drawbacks
 - Inefficient Usage of Bandwidth During Off Peak Hours
 - Intensive Programming Effort
 - Highly Dependant on Stats Collection

Static Reservations



Online Calculation

Benefits

- Better Reflection of Actual Traffic
- Less Manual Intervention
- Handles Sudden Surges of Traffic Better
- Drawbacks
 - Traffic Leads/Trails Reservations
 - Less predictable
 - Must use vendor's heuristics

RSVP Trailing Actual Traffic

Causes of Tunnel Failures

- Circuit/IGP Failure
- Lack of Reservable Bandwidth
 - Configured Interface Bandwidth
 - Preemption
- Miscalculation of Necessary Bandwidth
- Protocol bugs

Soft-Preemption

- Make Before Break (like)
 - Tunnel signals and establishes while forwarding continues
- Vendor Support
 - Juniper : Yes
 - Cisco: Planned

Considerations

- Is it better to have a constant path (even if suboptimal) all the time, or have traffic move to optimal paths as bandwidth becomes available but move back off if the network congests?
- Is it better to have more smaller tunnels, creating more state and possibly running into ECMP issues, of smaller bandwidth or fewer larger tunnels?

Considerations

- Are tunnels better off on core or edge routers? (dumb core or dumb edge)
- Should tunnel sizes be calculated by the router or by the engineering staff?
- How do you plan for traffic that normally hairpins out of a router/city during maintenance/failure/dos?

Bottom Line

- Using tunnels allows for more control of traffic flowing through a network
- RSVP/MPLS TE can defer costs, however:
 - More moving parts
 - More engineering resources
- It takes money to make money

Questions?