DNSSEC Goes Mainstream: Deployment Incentives, Experience, and Questions

Suzanne Woolf, ISC

Introduction

- What's DNSSEC and what problem does it solve?
- OK, so why isn't it deployed yet?
 - Economics
 - Operations
- What do you mean, it's being deployed?
- So what do I do now?
 - Experience we've had
 - Experience you can be part of

What's DNSSEC?

- Adds authentication to the DNS
 - Digital signatures (public key crypto)
 - Carried in DNS resource records
 - You know the message you got is what was sent
- That's all. Really.
- Does not:
 - Hide or encrypt anything
 - Prevent DDoS or otherwise protect servers

What Problem does DNSSEC Solve?

- Vanilla DNS is credulous enough to believe almost anything from almost anybody
- Once it's believed a bad answer, a resolver will keep repeating it, too.
- Some basic street smarts added over the years, but DNS is still pretty naive

Is This a Problem We Actually Have?

- Attacking DNS was simple, but attacking other things was even simpler
 - People (phishing)
 - Machines (worms/viruses)
 - Networks (compromised routers, hijacked addresses)
- So, for a long time: Nope, it's not.

All Dressed Up, No Place to Go

- DNSSEC standards issued in 2004.
- Support in widely used open source nameservers also in 2004
- And we waited
 - Costs some, in resources (bw, cpu, clue)
 - Benefits unclear (the usual chicken-and-egg, and didn't solve a really pressing problem)

So Why Are We Here?

- Remember about cache poisoning? Not a problem we have, right?
- March 2008, Dan Kaminsky discovers a way to turbocharge a well-known attack.
- Now cache poisoning is a problem we have.
- Remember DNSSEC? Awkward, expensive, not clearly good for much?
- Now DNSSEC solves a problem we have.

Overnight Success

- A handful of TLDs are signed now
 - se signed last year
 - gov signed early this year
 - .org signed in the last couple of weeks
- Other TLD operators are evaluating
 - Informally discussed plans for .mil, .edu, .uk, others....maybe even .com?
- IANA is publishing TLD trust anchors
 - Root is not signed
 - But there's a list of trust anchors from IANA

Oh and the root zone....

- Authority here is US Department of Commerce
 - Notice of Inquiry on DNSSEC, Oct. 2008
 - Key management gets wrapped in Layer 9
- Announced cooperative effort with ICANN and Verisign on "an initiative to enhance the security and stability of the Internet."
 - Interim plan, recognizes experience and evolution are needed
 - Goal is year-end deployment

Root zone mechanics

- ICANN's role
 - Operates IANA, due diligence on all root zone changes
- Verisign's role
 - Generates the root zone
 - Manages zone signing keys
- NTIA's role
 - Continue to audit changes to root zone
 - Final decisions on management of key signing keys (joint plan of Verisign and ICANN)

Early experience: .gov

- .gov live in Feb 2009
 - Formally announced Sept. 2008
 - Goal is for subdomains to be signed Dec. 2009
- Signed with NSEC3
 - NSEC3 prevents enumeration of zone
 - Newer variant, some unknowns
- Early results are encouraging
 - Registry interface works
 - Key rollover events successfully performed
 - gov key in IANA TLD key repository

Things to ponder: EDNS0

- EDNS0 extension to DNS "modernizes" the protocol
 - Packet size negotiation
 - Option fields
- EDNS0 with DO option set is required for DNSSEC
 - "DO=1" = "I won't die if I see DNSSEC data"
 - Assumes large enough packets to carry larger answers
 - Often set by default

Things to ponder: packet sizes

- EDNS0 provides for packet size negotiation
 - Starts large
 - Falls back smaller and smaller
 - Can go down to 512 bytes
- What if DNSSEC answer doesn't fit in negotiated packet?
 - TC bit (truncate) is set
 - Triggers fallback to TCP, which doesn't scale
 - Protocol fix under discussion: ignore DO if packet size is inadequate

Things to ponder: middleboxes

- Many stateful firewalls think they know what DNS packets look like
- DNSSEC-Signed answers are different
 - DNSSEC RRs do not look like other RRs
 - EDNS0 packets do not look like older DNS packets
- Much SOHO gear does the wrong thing by default, which can result in dropped answers.

Things We Still Don't Know (1)

- Uptake further down the tree
 - Business case for DNSSEC: what risks does it really mitigate?
 - Does having DNSSEC change anything if you don't use it?
 - How much is the resource commit, really?
- Widespread DNSSEC: what changes?
 - Scaling DNS (including the root zone)
 - Expectations: does a more trustworthy DNS enable other things?

Things We Still Don't Know (2)

- Key management is important.
 - Rollback is hard
 - Still evolving BCPs on algorithms, lifetimes, and other key characteristics
 - Where do you put them? (a TARpit)
- It's still hard to get people to pay for security
 - Registrars see no value proposition
 - TLDs are not charging

Conclusions

- DNSSEC is fairly complex technology
- That solves a problem we have, now
- With some costs,
- Providing some new potential, so
- If you've been waiting for DNSSEC to be "for real", your time is now.
 - If you manage DNS zones, look into signing them
 - If you run large resolvers, look at what will happen when you're receiving signed data

And a little help from our friends

- Folks here from:
 - Comcast DNS group
 - Afilias (.org operator)
- DNSSEC Signed Root Deployment Symposium
 - Gathering of DNSSEC experts June 11-12
 - Results appearing soon
- Ongoing data-gathering by early adopters