The Future of Internet Exchange Points

Richard A Steenbergen <ras@nlayer.net>
Avi Freedman <avi@servercentral.net>

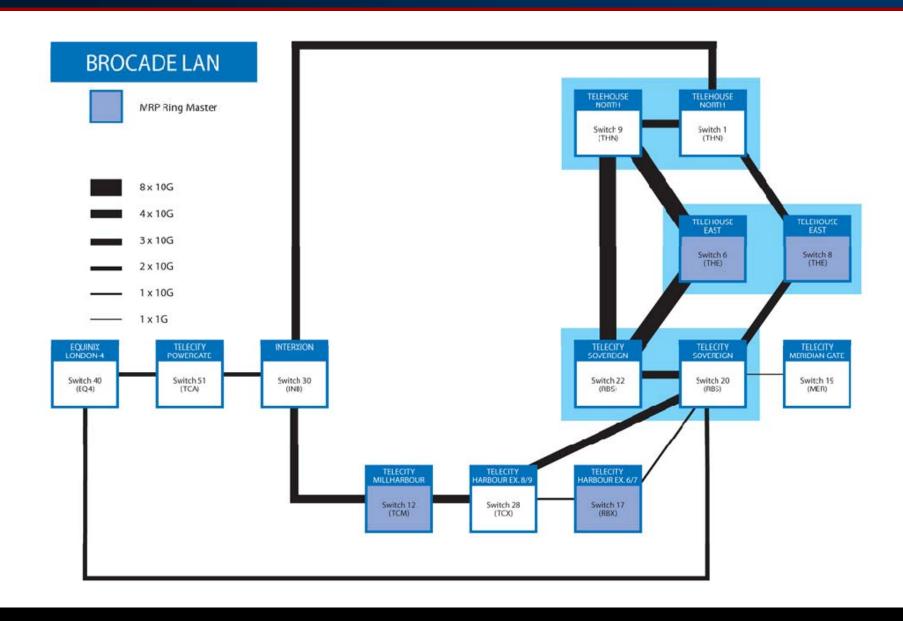
nLayer Communications, Inc. ServerCentral

History of Internet Exchange Points

History of Internet Exchange Points

- 0th gen: Throw a cable over the wall. PSI and Sprint conspire to bypass ANS. When the 3rd network wants to connect, thus is born MAE-East.
- 1st commercial gen: FDDI, Ethernet, multiple metro areas, head of line blocking, scaling issues.

History of Internet Exchange Points


- 2nd gen: ATM exchange points, from AADS/PBNAP to the MAEs and peermaker.
- 3rd gen: GigE exchange points (mostly nonblocking internal to the switches): PAIX; the rise of Equinix, LINX, AMS-IX.
- 4th/current gen: 10Gig exchange points (upgrades and scale-out of existing IXs through 2 or 3 revs of underlying platform expansion).

How Modern Exchange Points Work

How Modern Exchange Points Work

- Almost exclusively Ethernet based today
 - Driven by the commodity price of Ethernet switches
 - ATM exchanges died at OC12, were replaced by GigE
 - 10GE and Nx10GE has been primary growth for years
- Almost exclusively flat layer 2 VLAN
 - IX will be assigned an IP block (usually a /24, or similar)
 - Each member router will be assigned an IP
 - Any member can talk to any other member via Layer 2
 - Some broadcast traffic (typically ARP) is required
 - But this is typically well policed and a small fraction of traffic.
 - Even the biggest IXs have only a few hundred members.

Example Large IX (LINX) Topology

So What's Wrong With Existing IXs?

Fragility

- Layer 2 networks are relatively easy to disrupt
 - Forwarding loops, L2 networks have no TTL.
 - Broadcast storms, traffic flooded to all members.
 - Not only can these take down the exchange, but they can take down the members' entire router if successfully delivered.
- Today we work around these issues by:
 - Locking the port down to a single MAC address.
 - Either strictly hard-coded or via a limit of 1 dynamic MAC.
 - Only a single directly connected router port is allowed.
 - Careful monitoring of member traffic with traffic sniffers.
 - Good IX's have well trained staff for rapid response.

Accountability

- Most routers have poor or even no mechanisms for measuring traffic exchanged over a layer 2 IX.
- The options in use today are:
 - NetFlow from member router
 - Doesn't provide MAC layer information, can't handle inbound traffic.
 - Some popular platforms can't provide any useful NetFlow data at all.
 - SFlow from member router or from IX operator
 - Still sampled data, can easily be off by +/- 5% or more.
 - MAC accounting from member router
 - Not available on the vast majority of popular platforms today.
- None integrate well with provider 95th % billing systems.
- IX's are a poor choice for delivering billed services.

Security

- Any member can communicate with any other member, whether this is desired or not.
 - Vulnerable to traffic injection from peers or non-peers.
 - Poor accounting options make this hard to detect.
 - When caught, "failure to set next-hop self" provides easy excuse.
 - Even less security available for selling paid transit.
- Vulnerable to Denial of Service attacks
 - Can even be delivered from the outside world if the IX IP block is announced (as is frequently the case).
- Vulnerable to traffic interception, manipulation
 - ARP/CAM manipulation is trivial on a layer 2 network.

Scalability

- Difficult to scale and debug large layer 2 networks
 - Redundancy is provided through spanning-tree or similar vendor-proprietary protocols to block loops.
 - Large portions of the network must be placed into a blocking state to provide redundancy.
 - Idle capacity wastes money, increasing the cost of service.
 - Spanning-tree or similar protocols provide poor controls over where the traffic will flow in an outage.
 - Constrained to simple ring or star topologies, hard to scale to hundreds of gigabits across multiple locations.
 - Even the largest/best IXs who have successfully built a network to handle 800Gbps+ in 8 locations would have a hard time building to 80 locations, or supporting 8000 members.

Managability

- Poor controls over traffic rates and/or QoS
 - Essentially the ports are wide open and best effort.
 - Any member can send as much traffic as they want.
 - At best traffic controls are completely voluntary.
 - "Hey \$Peer, please back off you're filling my port."
 - Also makes it a poor choice for selling paid services.
- Difficult to manage multi-router redundancy
 - Multiple routers see the same IX /24 in multiple places.
 - Creates an "anycast" effect to the peer next-hops.
 - Can result in blackholing if there is an IX segmentation.
 - Or if there is an outage which doesn't drop link state.

Other Issues

Other issues

- Inter-network Jumbo Frame support is extremely difficult.
 - No ability to negotiate a per-peer MTU today.
 - Almost impossible to find an acceptable common MTU for everyone.
- Service is constrained to IP only, between two routers.
 - Must use IX provided IP address block.
 - Cannot use for layer 2 transport handoff.

Summary

- L2 IX's are an inherently fragile and unstable system.
- We've managed to make them work for free peering traffic.
- But they are still very poor choices for selling or buying services, delivering full transit, transport handoffs, etc.

Engineering a Better Exchange Point

Architecture of an Exchange Point

- The most common architecture of a modern exchange point is a shared broadcast domain.
 - Any member can talk to any other member.
 - Members are given a single IP from a common subnet.
 - Broadcast traffic delivered to every member.
- An alternative is using point-to-point virtual circuits
 - Essentially behaves like a private interconnection (PNI).
 - But adds additional overhead in circuit setup.

Eliminating the Shared Broadcast Domain

- So how would one do this under Ethernet?
 - Point-to-Point virtual circuits between members using 802.1q.
 - Hand off multiple virtual circuit VLANs on a single Interface.
- The concept is not a new one
 - This is how peering used to work over the old ATM exchanges.
 - But this technique was abandoned due to the significant cost and performance advantages of Ethernet over ATM.
- But it turns out, it's not that simple
 - There are reasons why you can't just roll out a VLAN based system for point-to-point interconnections over a traditional Ethernet switch.

The Problems with VLAN Exchanges

- The biggest issue is limited VLAN ID space
 - Ethernet VLANs are limited to 4096 possible IDs
 - 802.1q protocol can't express any more, only a 12 bit ID space.
 - "VLAN stacking" techniques are used to scale this for transport networks, but do not help in this use case.
 - With a traditional Ethernet switch, the VLAN IDs would need to be shared globally across the entire IX.
- This means a 65-member full mesh would completely exhaust all available VLAN IDs.
 - Traditional "VLAN rewrite" solutions don't help either.
 - Often they just burn both VLAN IDs, doubling exhaustion rate.
 - Also non-deterministic, due to shared resources across port ASICs.

The Problems with VLAN Exchanges

- But wait, there's more...
 - Not only does the IX have to manage its own VLANs
 - But it has to manage what VLANs each member can use
- Most IX members today use "layer 3 switch" routers
 - Comprises essentially the entire market for "cheap" 10GE.
 - But their architecture makes VLAN IDs globally significant
 - If port 1 uses VLAN ID 123, port 2 can't also independently use it.
 - VLAN 123 is a single global resource across the entire chassis.
 - Also, many platforms can not use the entire 4096 space.
 - And, many "routed" interfaces consume a virtual VLAN.
- Negotiating VLAN IDs would be next to impossible!

Requirements of a New IX Architecture

- Clearly a VLAN-based Ethernet switch won't work.
- A reasonable solution based on Ethernet must:
 - Expand the virtual circuit ID space significantly.
 - $2^12 = 4096$ is simply not enough.
 - Decouple 802.1q VLAN IDs from the IX infrastructure.
 - Make VLAN IDs have only local, per-port significance
 - That is, allow VLAN ID reuse on the IX platform across ports.
 - Allow members to choose their own VLAN IDs per VC
 - To avoid conflicts with existing member router VLAN IDs.
 - No "negotiation" of VLAN IDs with either the IX or remote party.
- How could we possibly accomplish all these goals?

The Answer – An MPLS Based IX

- Use MPLS transport rather than Ethernet switching
 - Solves VLAN scaling problems
 - MPLS Pseudowire IDs are 32-bits Over 4 billion virtual circuits.
 - VLAN ID is no longer carried with the packet, used only on handoff
 - VLAN IDs are no longer a shared resource across the IX or device
 - Solves VLAN ID conflict problems
 - Members could choose their own VLAN ID per VC handoff.
 - There is no requirement that the VLAN ID match the remote party.
 - Solves network scaling problems
 - Using MPLS TE is far more flexible than layer 2 protocols.
 - Allows the IX to build more complex topologies, interconnect more locations, and more efficiently utilize resources.

Advantages

Security

- Each virtual circuit would be isolated and secure.
- No mechanism for a third party to inject or sniff traffic.
- Significantly reduced potential for Denial of Service.

Accountability

- Most routers/L3 switches provide SNMP measurement capabilities for their VLAN interfaces/sub-interfaces.
- Members can now accurately measure traffic on each VC, without "guestimation", using their standard tools.
- Capable of integration with most ISP billing systems.

Advantages

Services

- With proper security and accountability, delivering or buying paid services (transit, etc) becomes possible.
- Support for "bandwidth on demand" now possible.
- No longer constrained to IP-only or one-router-only.
 - Can be used to connect transport circuits, SANs, etc.
- Provides the features of a metro transport solution or physical cross-connect, but with rapid provisioning.

Others

 Jumbo Frame negotiation across shared fabric now possible, since MTU can be configured per subint/vlan.

Getting Fancy With It

- Could interconnect with existing metro transport
 - Use Q-in-Q VLAN stacking to "extend" the network onto third party infrastructures.
 - Imagine a single IX platform able to service hundreds or thousands of buildings in a metro region.
- Could auto-negotiate VC setup using a web portal
 - Rapid provisioning using web 2.0 invite/accept model.
 - Could even auto-negotiate things like MTU and VC IPs
 - IX operator could automatically provide /30 (or /31)
 - And members could manage their DNS via the web portal
- Also functions as a transport platform.

Summary

- Existing exchange point architecture mostly works
 - With careful engineering to protect the L2 network
 - With a limited number of locations and chassis
 - Increasingly difficult to stay this way, as colocation facilities run out of space/power, and as data speeds increase.
 - With a significant amount of infrastructure overhead
 - For settlement-free services, but not paid services
 - For IP services only.
- But a new kind of exchange point would be better
 - Could transform a "peering only" platform into a new "ecosystem" model to buy and sell services too.

Send questions, comments, complaints to:

Richard A Steenbergen

Avi Freedman

<ras@nlayer.net>

<avi@servercentral.net>