Comcast IPv6 Trials

NANOG50 John Jason Brzozowski

October 2010

Overview

Background

Goals and Objectives

Trials

Observations

Background

- Comcast IPv6 program started over 5 years ago
- Incrementally planned and deployed IPv6
 - Today entire network is IPv6 capable or enabled
 - Back office systems upgraded to support IPv6
 - Access network is largely IPv6 capable, requires software upgrades and configuration
- Initial focus was to ready infrastructure to support device management
 - With incremental extension, support for IPv6 CPE could be introduced

Background (continued)

- Trials launched in January 2010
 - http://www.comcast6.net
 - http://www.xfinity6.net
- Over 7,000 subscribers registered to participate
- Comcast sites with IPv6 enabled for trial include
 - http://ipv6.comcast.net
 - http://ipv6.comcast.com
 - http://ipv6.xfinity.net
 - http://ipv6.xfinity.com

Goals and Objectives

- Ensure that underlying infrastructure can support content and service parity over IPv4 and IPv6
 - Native IPv6 is preferred versus the use of tunnels and other techniques
- Understand and identify issues, challenges, and gaps associated with offering content and services over IPv6
- To broaden the adoption of IPv6 among consumers and those who provide content and services.
 - Availability of IPv6 should be transparent to subscribers

TRIALS

6to4

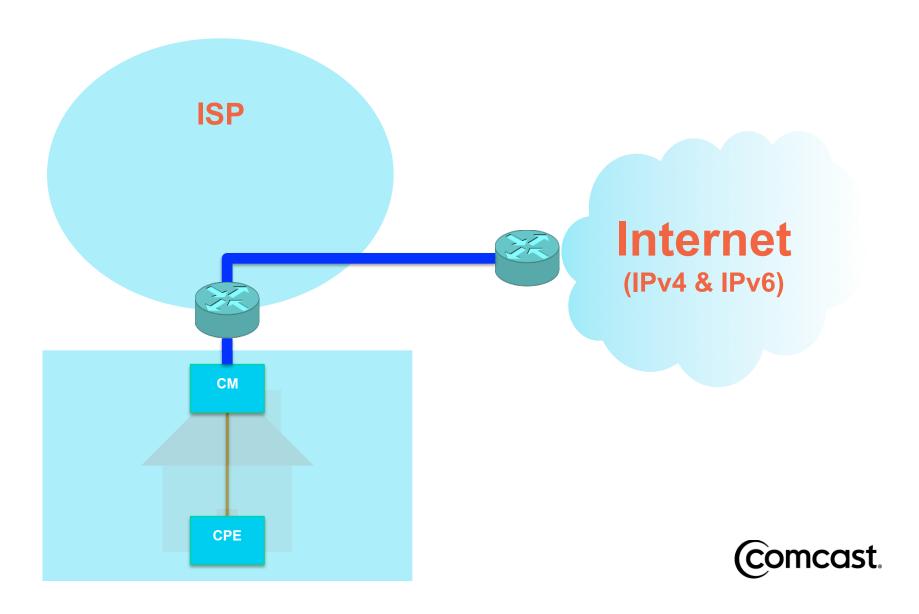
- RFC3056 provides additional information about 6to4
- 6to4 is a well known IPv6 transition technology
 - IPv6 packets are encapsulated over IPv4
- 6to4 is supported on a number of popular operating systems and home networking equipment
 - In many cases it is enabled by default
- It is important to note that 6to4 is being used whether operators have deployed 6to4 relays or not
 - There are a number of public 6to4 relays available today

6to4 (continued)

- 6to4 relays were also straight forward to deploy
 - Leveraging Linux based relays
 - Four are currently deployed, a fifth is targeted for deployment by EOY2010
- Deployment of 6to4 relays dramatically reduced latency
- Substantially more devices support 6to4 and 6to4 is enabled by default
- Dramatically increased native IPv6 traffic volumes

6rd

- 6rd is an enhanced version of 6to4
 - Mainly alleviates the requirement to use the 6to4 IPv6 anycast prefix (2002::/16)
 - See draft-ietf-softwire-ipv6-6rd for additional details
- 6to4 is a well known IPv6 transition technology
 - IPv6 packets are encapsulated over IPv4
- 6rd can be used to enable IPv6 connectivity to hosts that are connected to IPv6-incapable access networks
 - IPv6 packets are expected to be natively routed by the 6rd BR

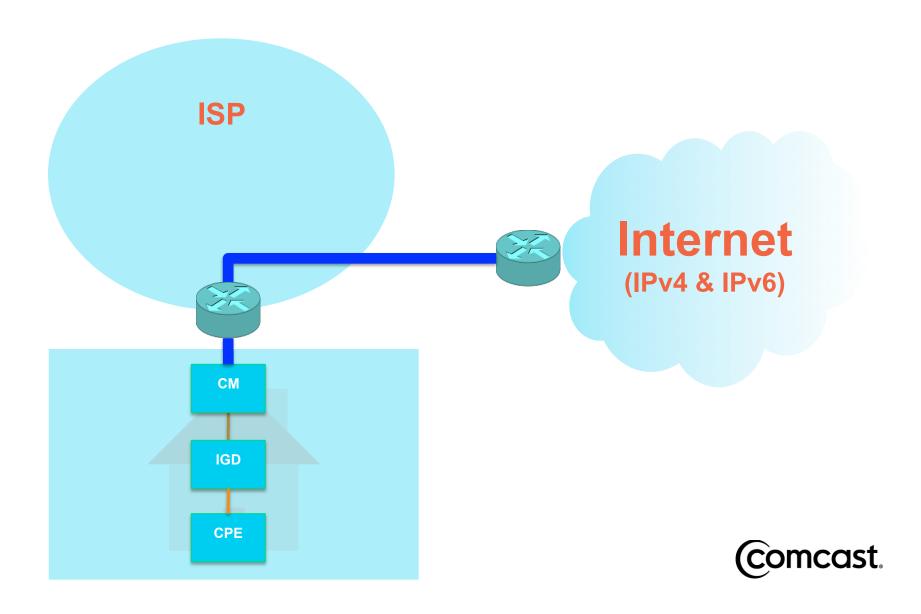

6rd (continued)

- 6rd border relays (BR) were straight forward to deploy
 - Centrally located 6rd BRs will impact geo-location
- 6rd like 6to4 is still the tunneling of IPv6 over IPv4
 - Placement and quantity of 6rd BRs will be a factor specifically with regards to latency
- Limited supported for residential CPE for 6rd
 - Resulted in manual configuration of CE

6rd (continued)

- DHCP servers will like require enhancement to support recently ratified DHCP options for 6rd
 - Will likely be required to support wide scale 6rd deployments
- Trial supports /64 for each 6rd CE
 - LAN side auto-configuration, static addressing

Subscriber IPv6 CPE



Pre-requisite Highlights for CPE

- For subscriber CPE directly connected to cable modem
 - Support for dual stack CPE by underlying network which includes provisioning
 - IPv6 stack and stateful DHCPv6
 - Applications that support the use of IPv6 transport

Subscriber IPv6 IGD

Pre-requisite Highlights for IGD

- For subscriber IGD connected to cable modem
 - Support for dual stack CPE by underlying network which includes provisioning
 - IPv6 stack and stateful DHCPv6 (WAN) including prefix delegation
 - Configuration and addressing on subscriber LAN
 - IPv6 routing (and firewall)
 - Subscriber CPE must also support IPv6 including applications

Native Dual Stack

- Existing IPv4 services remain as-is
- Native IPv6 is introduced in addition to classic IPv4 access
 - Applies to IPv6 capable standalone CPEs
 - Applies to IPv6 capable home/SOHO routers
- Commercial non-DOCSIS access services are also included
 - Fiber/Metro Ethernet leverages a similar approach

Native Dual Stack (continued)

- Upgrades and configuration of existing hardware is underway
- Native dual stack trials are geographically limited at this time
 - Several areas across the footprint are being targeted
- Controlled introduction using known and tested hardware combinations
 - Will expand device diversity over time as part of the trials

Native Dual Stack (continued)

- Standalone CPE and CPE routers will be supported
- Provisioning of operator facing interfaces is required to be stateful in nature
 - Autoconfiguration is not supported
- Wider range of LAN side provisioning alternatives
- Standalone CPEs provisioned with /128s
- CPE routers provisioned with /128 (WAN) and a delegated prefix
 - Delegated prefix is minimally a /64 (LAN)

Observations

- Availability of content continues to be lacking
 - This is obvious when observing aggregate native IPv6 traffic patterns
 - Collaborate with content providers
- Tunneling solutions are straightforward to deploy
 - The latency even though improved may remain a challenge when delivering certain types of services
 - There is a non-trivial volume of 6to4 traffic today

Observations (continued)

- CPE support for native dual stack is increasing
 - Many existing home networking devices do not support IPv6 and/or do not meet the necessary requirements

Q&A

Contact informationJohn Jason Brzozowski+1-484-962-0060

john brzozowski@cable.comcast.com