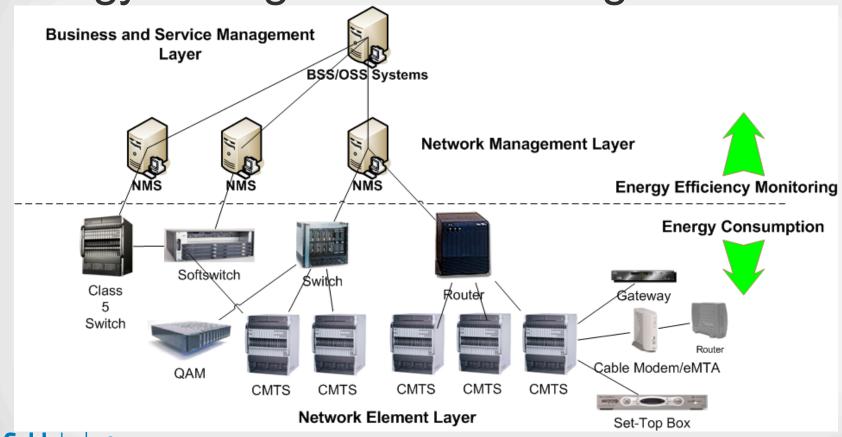
A Unified and Efficient Approach to Energy Management across the Network

Brian Hedstrom NANOG57

February 4-6, 2013


Agenda

- Problem Statement
- Energy Management Monitoring Use Case
 - Different Views into Information Model
- Energy Management Data Model
- Competing Protocol Limitations
- Energy Management Collection Interface
 - IPDR/SP Overview
- Energy Management Application Framework
- Conclusion

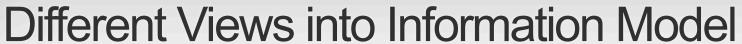
Problem Statement

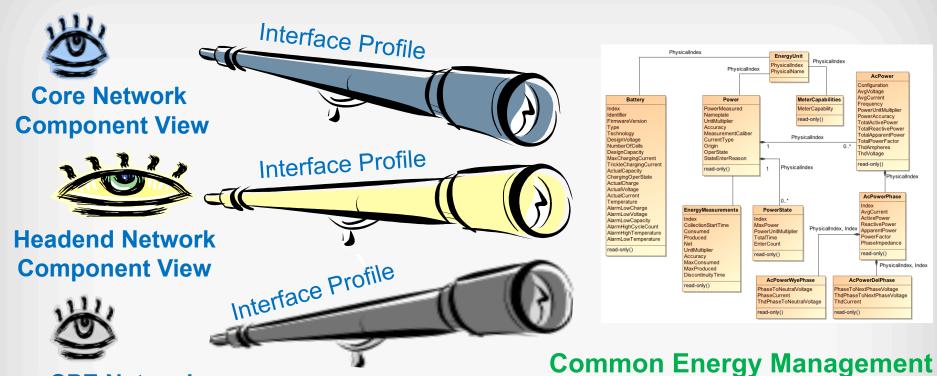
- The U.S. Department of Energy has issued a Docket on RFI for Energy Conservation Standard for Set Top Boxes and Network Equipment
 - 76 FR 32325, December 16, 2011
 - http://www.gpo.gov/fdsys/pkg/FR-2011-12-16/html/2011-32325.htm
- Device manufacturers are now beginning to address energy efficiency in their network equipment
- But what about the back office? What about energy management monitoring? We need back office tools...based on state of the art technology and design approaches

Energy Management Monitoring Use Case

Slide 4

CableLabs®


Energy Management Information Model


- Defines the protocolagnostic Information Models (in UML Class Diagram syntax) for the Energy Management Monitoring Use Case
- Defines the common Energy Management Information Model
- **Model shown based on IETF eman WG attributes

EnergyUnit PhysicalIndex PhysicalIndex PhysicalIndex PhysicalName AcPower Configuration AvgVoltage AvgCurrent MeterCapabilities Battery Power Frequency Index PowerMeasured MeterCapability PowerUnitMultiplier Identifier Namenlate PowerAccuracy read-only() FirmwareVersion UnitMultiplier TotalActivePower Type Accuracy TotalReactivePower Technology MeasurementCaliber TotalApparentPower PhysicalIndex DesignVoltage CurrentType TotalPowerFactor NumberOfCells Origin ThdAmpheres OperState DesignCapacity ThdVoltage MaxChargingCurrent StateEnterReason TrickleChargingCurrent read-only() PhysicalIndex read-only() ActualCapacity PhysicalIndex ChargingOperState ActualCharge ActualVoltage ActualCurrent AcPowerPhase Temperature Index AlarmLowCharge EnergyMeasurements **PowerState** AvgCurrent AlarmI owVoltage ActivePower AlarmLowCapacity ReactivePower CollectionStartTime MaxPower AlarmHighCycleCount PhysicalIndex, Index ApparentPower AlarmHighTemperature Consumed PowerUnitMultiplier PowerFactor Produced AlarmLowTemperature PhaseImpedance EnterCoun read-only() UnitMultiplier read-only() read-only() Accuracy MaxConsumed PhysicalIndex, Index MaxProduced DiscontinuityTime **AcPowerWyePhase AcPowerDelPhase** read-only() PhaseToNeutralVoltage PhaseToNextPhaseVoltage **PhaseCurrent** ThdPhaseToNextPhaseVoltage ThdPhaseToNeutralVoltage ThdCurrent read-only() read-only()

Slide 5

CableLabs®

CPE Network Component View

CableLabs®

Interface Profiles: Define access to a specific set of Information

© 2013 CableLabs®. All rights reserved.

Information Model

Energy Management Data Model

- Defines the protocol-specific implementation data models for the Energy Management Monitoring Use Case
- Translate Information Model into Data Model for implementation in network devices
- Many types, based on management protocols
 - IPDR Service Definitions (XML Schemas)
 - · Transport uses IPDR/SP protocol, payload based on XML
 - NETCONF YANG Modules
 - Transport uses NETCONF protocol, payload based on XML
 - TR-069 Data Models (XML Files/Schemas)
 - Transport uses TR-069 protocol, payload based on XML
 - SNMP MIBs (SMI)
 - Transport uses SNMP protocol, payload based on ASN.1

CableLabs®

Slide 7

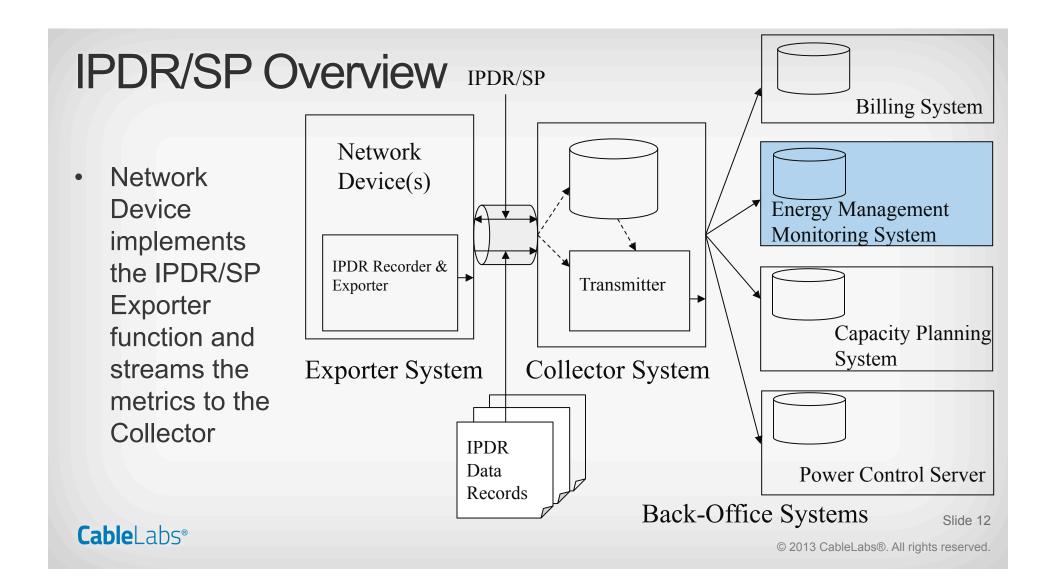
SNMP MIB Data Model Limitations

- Syntax is too constraining, complex and static
- Language is not extensible
- Cannot define complex structures
 - For example, tables embedded in tables not supported
 - Not well defined for hierarchical tree structures which more mimic device configurations
- No support for operations
- Limited support for versioning/revisions
 - No method for advertising module and versions supported

SNMP Protocol Limitations

- Lack of support for
 - Atomic transactions
 - Providing a full config at boot time
 - Providing backup and restore capabilities
 - Validation of cfg data set prior to activation
 - Connection-oriented management sessions
 - Limited to connectionless transport which can generate more traffic (e.g., inefficient for configuring complex devices)
 - Multiple configuration data stores
- Limited set of protocol operations (Get, Set, etc)
- Not scalable
- Using SNMPv3 for secure connections is complex and difficult to deploy

NETCONF/TR-069 Protocol Limitations


- NETCONF and TR-069 protocols were designed for configuration management functions, not data collection
- Both protocols transport uncompressed XML
 - Leads to 10x the data size
 - Increased bandwidth
 - Increased processing time

Energy Management Collection Interface IPDR/SP Protocol

- Under the TeleManagement Forum's Interface Framework resides the IPDR/SP standard
 - Internet Protocol Detail Record/Streaming Protocol
 - A Data record streaming protocol
 - http://www.tmforum.org/DocumentLibrary/IPDRTechnicalSpecifications/47351/ article.html
- Service Definitions define the data record (information model) format via XML Schema
 - Guidelines for data model definitions maintained

Efficiency Gained with IPDR/SP


- Eliminates redundant information
- Different collection methods
 - Time Interval, Event Based and Ad-hoc Sessions
- Reduces management bandwidth on network
- XDR binary serialization encoding creates compact data records
- Minimizes computational encoding/decoding processing for resources
- IPDR provides negotiated "Push" vs. incremental "Pull"
- TCP-based: connection oriented transport reliability
- Provision for a redundant Collector for automated fail-over

Slide 13

Energy Management Application Framework

- Network Element Layer →
 Eelement Management Layer
 uses IPDR/SP Collection
 Method
- New generation protocol provides
 - High Availability & Redundancy
 - Massive Scalability
 - Efficiency
 - Standardized Data Models
 - XML Schemas

Conclusions

- New Energy Management Back Office OSS Framework is needed to address the trends of lowering the energy consumption in the network
- New tools are just the beginning
 - We have protocols today to address efficient and scalable collection of metrics from the network
- Need to drive the standardization of common Information Models and data models based on the collection methods for network devices
 - Design the data models using information modeling concepts from UML and publish the information models
- These approaches can enable a SOA based framework for monitoring energy parameters within the network
- The Cable use case presented can be applied to any Communications
 Service Provider example
 Cable Labs

© 2013 CableLabs®. All rights reserved.

Slide 15

Q&A

Brian Hedstrom b.hedstrom@cablelabs.com