Mathletics

B Student \square

Operations with Number

Copyright © 2009 3P Learning. All rights reserved.
First edition printed 2009 in Australia.
A catalogue record for this book is available from 3P Learning Ltd.

ISBN
 978-1-921860-12-6

Ownership of content The materials in this resource, including without limitation all information, text, graphics, advertisements, names, logos and trade marks (Content) are protected by copyright, trade mark and other intellectual property laws unless expressly indicated otherwise.
You must not modify, copy, reproduce, republish or distribute this Content in any way except as expressly provided for in these General Conditions or with our express prior written consent.

Copyright Copyright in this resource is owned or licensed by us. Other than for the purposes of, and subject to the conditions prescribed under, the Copyright Act 1968 (Cth) and similar legislation which applies in your location, and except as expressly authorised by these General Conditions, you may not in any form or by any means: adapt, reproduce, store, distribute, print, display, perform, publish or create derivative works from any part of this resource; or commercialise any information, products or services obtained from any part of this resource.

Where copyright legislation in a location includes a remunerated scheme to permit educational institutions to copy or print any part of the resource, we will claim for remuneration under that scheme where worksheets are printed or photocopied by teachers for use by students, and where teachers direct students to print or photocopy worksheets for use by students at school. A worksheet is a page of learning, designed for a student to write on using an ink pen or pencil. This may lead to an increase in the fees for educational institutions to participate in the relevant scheme.

Published 3P Learning Ltd
For more copies of this book, contact us at: www.3plearning.com/contact
Designed 3P Learning Ltd
Although every precaution has been taken in the preparation of this book, the publisher and authors assume no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of this information contained herein.

Series B - Operations with Number

Contents

Topic 1 - Number bonds up to 10 (pp. 1-13)
Date completed

- 5 (five)
- 6 (six)
- 7 (seven)
- 8 (eight)
- 9 (nine)
- 10 (ten) \qquad

Topic 2 - Addition to 10 (pp. 14-26)

- counting on
- using number lines
- turnarounds
- adding using number bonds
- word problems

Topic 3 - Addition to 20 (pp. 27-46)

- my addition chart \qquad
- counting on
- missing number problems
- doubles \qquad
- making 10
- adding teen numbers
- game
- word problems
- turnarounds

Topic 4 - Subtraction within 10 (pp. 47-59)

- crossing out \qquad

- counting back \qquad
- find the difference \qquad

- subtracting using number bonds
- word problems \qquad
\square

Series B - Operations with Number

Contents

Topic 5 - Subtraction within 20 (pp. 60-69)

- crossing out
- counting back \qquad

Topic 6 - Addition and subtraction (pp. 70-88)

- fact families \qquad
- tens
- counting in tens and ones \qquad
\square
-word problems \qquad
- doubles
- relating addition and subtraction \qquad
- explore \qquad

```
/ /
```

- counting on 20-50 \qquad
- counting back 20-50 \qquad

- explore _
- word problems
\square

Topic 7 - Multiplication (pp. 89-98)

- equal groups \qquad
- groups and arrays

- word problems \qquad

- meaning of \times symbol \qquad
\square
- explore \qquad
Topic 8 - Division (pp. 99-103)
- sharing
- grouping

Series Author:

Rachel Flenley

Number bonds up to 10 - 5 (five)

We call the pairs of numbers that make a particular total number bonds. Here we are learning about number bonds to 5 .

There are 5 cubes altogether.
 are there altogether?
There are 4 different number sentences we can write for this number bond.
Can you see these in the picture?

$$
\begin{aligned}
& 1+4=5 \\
& 4+1=5 \\
& 5-1=4 \\
& 5-4=1
\end{aligned}
$$

1 Write down one addition and one subtraction sentence for each picture.
a

b

Number bonds up to 10 - 5 (five)

1 Write down one addition and one subtraction sentence for each picture.
a

b

c

e

> Remember: when there are no white cubes we can record the number of white cubes as 0 .

Number bonds up to 10 - 5 (five)

Number bonds can also be shown like this.

We can put this number
bond into the model.
We can write 4 number sentences for this part-whole model.

$$
\begin{array}{ll}
2+3=5 & 5-2=5 \\
3+2=5 & 5-3=2
\end{array}
$$

1 Write the missing number and complete the addition sentence.

2 Write the missing number and complete the subtraction sentence.

Number bonds up to 10 - 6 (six)

Number bonds to 6 are all pairs of numbers that add together to make 6 . Knowing our number bonds helps us to solve number problems.

1 Use the pattern to complete the addition and subtraction number sentences.

$$
\begin{aligned}
& 0+6=6 \\
& 1+\square=6 \\
& 2+4=6 \\
& 3+\square=6 \\
& 4+2=6 \\
& 5+\square=6
\end{aligned}: \begin{aligned}
& 6-6=0 \\
& 6-5=1 \\
& 6-3=\square \\
& 6+\square=6
\end{aligned}: \begin{aligned}
& 6-2=\square \\
& 6-1=5 \\
& 6-0=\square
\end{aligned}
$$

2 Complete these part-whole models.

Number bonds up to 10-7 (seven)
Number bonds to 7 are all pairs of numbers that add together to make 7. Knowing our number bonds helps us to solve number problems.

1 Use the pattern to complete the addition and subtraction number sentences.

	$0+7=7$	$7-7=0$
	$1+\square=7$	$7-6=$
	$2+\square=7$	$7-5=$
	$3+4=7$	$7-4=3$
	$4+\square=7$	$7-3=$
	$5+2=7$	$7-2=5$
$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	$6+\square=7$	$7-1=$
	$7+0=7$	$7-0=$

2 Complete these part-whole models.

Number bonds up to 10 - 8 (eight)

Number bonds to 8 are all pairs of numbers that add together to make 8. Knowing our number bonds helps us to solve number problems.

1 Use the pattern to complete the addition and subtraction number sentences.

2 Complete these part-whole models.

Number bonds up to 10 - 9 (nine)

Number bonds to 9 are all pairs of numbers that add together to make 9 . Knowing our number bonds helps us to solve number problems.

1 Colour the counters to make number bonds. Write a number sentence for each row.

O
O
O
O
O
○ O o o o o 0 O ○
\square
\square
\qquad
\square
\square
\square
\square
\square
\square
\square

\square
$\square=\square$
$\square=\square$
\square
\square
\square
\square
\square
\square

2 Complete these part-whole models

Number bonds up to 10 - 10 (ten)

Number bonds to 10 are all pairs of numbers that add together to make 10. Knowing our number bonds helps us to solve number problems

1 Colour the counters to make number bonds. Write a number sentence for each row.

2 Complete these part-whole models

Number bonds up to 10 - 10 (ten)

Number bonds to 10 are all the pairs of numbers that when added together make 10.

There are 10 pegs altogether on the coat hanger.

1 Write down one addition and one subtraction sentence for each picture.
a

b

C

d

Number bonds up to 10 - 10 (ten)

1 Write down one addition and one subtraction sentence for each picture.
a

$$
\square-\square=\square
$$

b

$$
\square-\square=\square
$$

C

d

Number bonds up to 10 - 10 (ten)

1 Find the pair to make 10.

f

2 Find the missing number to make 10 and write the addition or subtraction sentences for the diagram.
a

$\square+\square=\square$

b

$\square-\square=\square$

c

Number bonds up to 10 - 10 (ten)

1 Bessie Baker baked lots of and made trays of 10. Marvin Muncher helped himself to the trays! Use a strategy of your choice to find how many $\frac{8}{\square}$ Marvin stole from each tray. Write the subtraction number fact.

a $10 \text { - }$ $2=$	b $10 \text { - }$ \square $=$
c $10 \text { - }$ \square $=$	d
e	
9 10 - \square $=$	h $10 \text { - }$ \square $=$

Number bonds up to 10 - 10 (ten)

Knowing the addition facts is really handy. It helps us to solve number problems.

1 Practise your addition combinations to 10 .
a $0+\square=10$ b $1+\square$

$$
]=10
$$

$$
\text { c } 2+\square=10
$$

$$
\text { d } 3+\square=10
$$

$$
\text { e } 4+\square=10 \text { f } 5+\square=10
$$

$$
96+\square=10
$$

$$
\text { h } 7+
$$

$$
\square
$$

$$
\text { j } 9+\square=10
$$

$$
\mathbf{k} 10+\square=10: \mathbf{l} 4+\square=8
$$

2 You will need 6 different coloured pencils for this activity. Colour match the balloons that add to ten.

Addition to 10 - counting on

Counting on is one way to solve addition facts.

$$
\begin{gathered}
5+1=? \\
5+1=6
\end{gathered}
$$

1 Count on and finish the number facts.

b

Addition to 10 - counting on

We can solve missing number problems by counting on.
Look at this problem.

$$
3+?=7
$$

We know that we have 3. We know that we need to get to 7 .
So, we start at 3 and count on until we get to 7 .
We added 4 more to get to 7 .

$$
\text { So, } 3+4=7
$$

1 Count on and finish the number facts.

Addition to 10 - counting on

Let's add by counting on.

$$
\begin{aligned}
& \begin{array}{|l|l|}
\hline 6 & \bullet \bullet \\
6+3 & \\
6
\end{array}=9
\end{aligned}
$$

1 Count on. Write the number fact.
a

$5+\square=\square$
b

$\square+\square=\square$

d

h

Addition to 10 - counting on

1 Draw the extra carriages to match the problems. Complete the facts.

a $3+1=\square$

Sesentinititity c $2+3=\square$
conexerestinctich
b $4+2=\square$

d $3+3=\square$

2 Draw the flowers and finish the facts.

a $7+2=\square$
b
$8+2=\square$

c $5+3=\square$

Addition to 10 - using number lines

Number lines are handy tools to use when adding.

$$
\text { Look at } \mathbf{4}+\mathbf{2}=?
$$

We start at 4 and hop 2 spaces.

1 Hop along the number line and finish the number fact.
a $3+1=\square$

b $4+4=\square$

c $2+3=\square$

2 The hops are on the line. Write the number fact to match.

Addition to 10 - turnarounds

Turnarounds make solving addition problems easier.

It is quicker to turn this around. We start at 6 and count on 2 .

$\mathbf{6 + 2}=\mathbf{8}$ This is the same as $\mathbf{2 + 6 = 8}$

1 Use turnarounds to solve these. Write the matching facts.

\bullet	\bullet	\ddots	$\bullet \cdot$
	\ddots		

b

$2+5=\square$
$\square+\square$

c \quad	$\bullet \bullet$	$\bullet \bullet \bullet$
	$\bullet \bullet \bullet$	

| \bullet | \bullet | $\ddots \bullet$ |
| :--- | :--- | :--- | :--- |
| | \ddots | |

$$
3+6=\square
$$

$$
3+7=
$$

Use the line to help you.

Addition to 10 - adding using number bonds

Now that we've learnt our number bonds up to 10, we can use them to solve number problems.
Look at this problem.

How many animals are there altogether?

We can use a part-whole model to show this.

1 Fill in the missing numbers.

C
\square $+$

$$
=\square
$$

Addition to 10 - adding using number bonds
1 Complete the number sentences.
$\boldsymbol{a} 2+\square=8$

b $5+\square=6$ 5
c $\square+4=5$

$d 2+\square=9$

$\boldsymbol{e} \square+3=7$

2 If you know that 7 and 3 is 10, how could you work out what $8+3$ is?

Addition to 10 - word problems

1 What are some words or signs we use when we add or talk about adding?

2 Write the missing numbers.

a There are 3 stripy socks. There are 4 spotty socks.

$$
3+4=\square
$$

There are \qquad socks altogether.

b There are 5 black shirts. There are \qquad white shirts.

$$
5+\square=\square
$$

There are \qquad shirts altogether.

Addition to 10 - word problems

1 Draw the objects and write the missing numbers.

a
Draw 4 more flowers.

$$
1+\square=\square
$$

There are \qquad flowers altogether.

b
Draw 4 more strawberries in the bowl.

There are \qquad strawberries in total.

c
Draw 6 more stars.

$$
\square+\square=\square
$$

There are \qquad stars altogether.

Addition to 10 - word problems

1 Draw pictures and then write the fact.
a

Millie Monkey has 4 bananas.

Mikey Monkey has 3 bananas.

How many do they have altogether?
$\square+\square=\square$
b Bert Bear has 5 fish.
Betty Bear has 3 fish.

How many fish do they have altogether?

$$
\square+\square=\square
$$

c Scottie Dog has eaten 7 sausages.

Cuddly Pup has eaten 3 sausages.

How many sausages have they eaten?

$$
\square+\square=\square
$$

Addition to 10 - word problems

Sometimes we have to solve problems when we know the answer but we don't know all of the problem.
Noah had 4 cars.
His gran gave him some more so he now has $\mathbf{7}$ cars.
How many cars did she give him?
We know he had 4 cars.
We know he ends up with 7 cars.
What we don't know is how many cars his gran gave him. One way to find out is to draw or use counters.
We draw 4 cars. Then we draw some more cars to get to 7 .

We need to draw 3 more cars.

$$
4+3=7
$$

Addition to 10 - word problems

1 Draw and finish the fact.
a Zoe had 3 fish. She bought some more and now has 5 fish. How many did she buy?

$3+\square=5$
She bought \qquad more fish.
b Lily ate 3 cakes before her party. She ate some more cakes during her party. By the end of the party she had eaten 9 cakes altogether.
How many more cakes did she eat during the party?

$3+\square=9$ She ate___ more cakes during the party.
c Amman had some toy dinosaurs. His dad bought him 5 more. Now he has 10 dinosaurs. How many dinosaurs did he have to begin with?

\square $+5=10 \quad$ He had \qquad dinosaurs to begin with.

Addition to 20 - my addition chart

As you learn your addition facts, ask a grown up to quiz you on them. If you can say the answer straight away, they will put a dot in the answer square.
Colour each square as you master the fact!

+	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	10
2	2	3	4	5	6	7	8	9	10	11
3	3	4	5	6	7	8	9	10	11	12
4	4	5	6	7	8	9	10	11	12	13
5	5	6	7	8	9	10	11	12	13	14
6	6	7	8	9	10	11	12	13	14	15
7	7	8	9	10	11	12	13	14	15	16
8	8	9	10	11	12	13	14	15	16	17
9	9	10	11	12	13	14	15	16	17	18

Addition to 20 - counting on

Read the addition sentence: $13+5=?$
Start by finding the largest number and count on the smaller number.

The number you land on is the answer, so $13+5=18$

1 Count on using the number line. Complete the number sentences.
a $12+3=\square$

b $14+5=\square$

c $9+7=$ \square

d $11+8=$ \square

Remember we count the jumps or spaces, not the numbers!

Addition to 20 - counting on

You will need:

What to do:

Cut out the rocket parts and spread them out.
Your job is to build as many rockets as you can by matching 3 parts.
This rocket is ready for blast-off because $10+:=13$.
Take turns building your rockets. How many can you get ready for blast-off? You will have some parts left over.
Check with your teacher if your rockets are ready to go into space.
Once your rockets have been checked, stick them on black paper. Add planets and moons. Don't forget the sun!

Addition to 20 - counting on

Addition to 20 - counting on

1 Hop along the number line and finish the number fact.
a $9+2=\square$

b $8+5=\square$

c $7+7=\square$

d $11+2=\square$

2 Show the story on the number line and as a fact.
a Tahlia had $\mathbf{8}$ stickers. Her friend gave her $\mathbf{4}$ more. How many stickers does she have now?

$$
\begin{array}{|l|l|l|lllllllllllll}
\mathrm{L} & 1 & \mid & 1 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15
\end{array} \square+\square=\square
$$

b Mohammed kicked $\mathbf{7}$ goals on Tuesday and $\mathbf{6}$ goals on Wednesday. How many goals did he kick altogether?

Addition to 20 - counting on

Read the addition sentence: $\mathbf{3}+14=$?
Start by finding the largest number and count on the smaller number.

The number you land on is the answer, so

$$
3+14=14+3=17
$$

1 Count on using the number line. Complete the number sentences.
a $9+4=$ \square

b $2+17=\square$

c $10+8=\square$

Remember to start with the biggest numbers!

Addition to 20 - missing number problems

Look at this problem. $7+$? $=11$
We can use counters to help solve this.
We know that we want to make 11 counters so let's take 11 counters. We already have 7 so let's circle those.

4 more counters make 11 counters. So, $7+4=11$

1 Solve these problems. You can draw pictures or use counters to help.
a $2+\square=11$
b $3+\square=14$
c $\square+8=17$
d $13+\square=18$
e $3+\square=12$
$\mathrm{f} \square+4=16$

2 The answer is 14 . How many different adding facts can you think of? Here is one to get you started.

Addition to 20 - doubles

1 Draw the same number of spots on the empty side. Write the number fact to match.

b

$\mathbf{d} \square+\square=\square$
e

$f+\square=$ $=\square$

2 Draw the missing legs. Write the number fact to match.

d \square
$+\square=\square$

Addition to 20 - doubles

1 These twins show us lots of doubles facts. Here are some.

7
\cdots
F

Can you find any more? Write them.

Addition to 20 - doubles

You will need: a partner of scissors

What to do:

Cut out the tens frames. Shuffle them and spread them out, face down. Take turns turning 2 frames over at a time. If they are a double and you can say the matching number fact, you keep the pair. Play until all cards are gone.

Addition to 20 - doubles

You will need:

What to do:
Take turns rolling 1 die. Double the number you roll and say the number fact.
Place a counter on the answer. The first person to cover all their numbers blasts-off first!
$3+3$ is 6.
I'll cover 6.

What to do next:

Roll 2 dice and add the dots. Work out what the double of the total will be. You can use counters to help.
Record the number facts you make.

Addition to 20 - making 10

The make 10 strategy can help us to solve number problems. Look at $\mathbf{6}+5=$?

Make 10 and then add the rest.

$$
10+1=11
$$

1 Finish the facts.
a $10+3=\square$
b $10+4=\square$
c $10+2=\square$
d $10+9=\square$
e $10+1=\square$
f $10+8=\square$
g $10+7=\square$
h $10+6=\square$
i $10+5=\square$

2 Complete the number bonds.
a

b

c

Addition to 20 - making 10

1 Make 10 to solve these problems then fill in the part-whole model.

b $9+5=\square$

$$
\begin{aligned}
& 9+\square=10 \\
& 10+\square=\square
\end{aligned}
$$

Addition to 20 - making 10

$$
\text { Look at } 9+5=?
$$

We can use the make 10 strategy to solve this.
We place 9 counters. We need to add 5 more.

We put 1 in the first tens frame.
We have made 10.
We need to add 4 more into the other frame.
Now we have 14.
$9+5=14$

1 Colour more counters to solve these problems. Fill up the left tens frame first.

b

c
in the other

Addition to 20 - making 10

1 Colour more counters to solve these.

a	88	0
08	0	
08		
08		
0	0	

$8+5=\square$

b

$7+6=\square$

2 Write the addition facts to match the tens frames.

Addition to 20 - adding teen numbers

When we add ones it can be helpful to split the teen number into tens and ones.
Look at $15+3=?$

$$
\begin{aligned}
5+3 & =8 \\
10+8 & =18
\end{aligned}
$$

1 Finish the fact. Use cubes to help.

$d 4+14=\square$

2 Solve.
a $12+7=\square$
b $11+5=\square$
c $13+4=\square$
d $14+2=\square$

Addition to 20 - game

What to do:

Place both counters on the number 1. Player 1 rolls the dice and adds the number rolled to the number the number their counter is on. Take turns. The winner is the first player to reach 20. You must roll the correct number to land on 20.

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16
17	18	19	20

Addition to 20 - word problems

1 Draw pictures and then write the fact.
a Tom Thumb has 12 apples. Lucy Locket has 7 apples.

How many do they have altogether?

b Pink Penelope has 15 stars. Blue Bertie has 4 stars.

How many stars do they have altogether?

c Hungry Harry has eaten 7 donuts.

Little Lila has eaten 9 donuts.

How many donuts have they eaten altogether?
$\square+\square=\square$

Addition to 20 - word problems

1 Draw pictures and finish the fact.
a Peter's Pet Shop has 6 puppies. They buy some more.
Now they have 14 puppies. How many more did Peter buy?

$6+\square=14$
He bought \qquad more puppies.
b Tara had 13 toy cars. She was given some more for her birthday. Now she has 17. How many was she given

\square She was given \qquad more car.
c Class 1F had 8 apples. Their teacher bought some more. Now they have 17 apples. How many more apples did their teacher buy?

\square Their teacher bought \qquad more.

Addition to 20 - turnarounds

You will need: a partner \square counters

2 dice

What to do:

Decide who will go first. Roll the 2 dice. Decide which number is easiest to start with and add the numbers.
Write the fact on the fact wall. Play together until you have filled all the bricks.

Subtracting within 10 - crossing out

One way to subtract is to take things away or cross them out and count how many are left.

$$
6-2=4
$$

1 Cross out the pictures to match these number facts.

$$
\begin{array}{r}
a \rightarrow 0 \\
b-2=4
\end{array}
$$

$$
\begin{gathered}
\mathbf{b} 00-6=1 \\
7-600
\end{gathered}
$$

2 Show these picture stories as number facts.

b
$\square-\square=\square$

d

Subtraction within 10 - counting back

Another way to subtract is to count back. Number lines can help us do this as counting backwards can be tricky!

$$
8-3=?
$$

We start at 8 and jump back 3 spaces.

$$
8-3=5
$$

1 Count back using the number line. Finish the number facts.

a $\quad 5-3=\square$

c $\quad 4-2=\square$

e $\quad 7-6=\square$

Remember we count the jumps or spaces, not the numbers!

Subtraction within 10 - find the difference

When we subtract, we can compare 2 groups or numbers and ask ourselves, 'What is the difference? Does one group have more than the other? Does one group have less than the other?' Look at these 2 trains. What is the difference?

5 This train has 5 carriages.
3 This train has only 3 carriages.
If they both had 3 carriages, they would be the same.
If they both had 5 carriages, they would be the same.
What is the difference?
The difference is 2 carriages.

1 What is the difference?

The difference is

The difference is

The difference is

The difference is

Subtraction within 10 - find the difference

What if there is no difference? How do we say or record that?

These shirts both have 3 buttons.

There is no difference. The difference is $\mathbf{0}$.

1 Draw buttons to show no difference.

2 Draw fish in the bowls. Make one bowl have no difference. Make the other bowl have a difference of 2 .

no difference

Subtraction within 10 - find the difference
You will need: 1 partner or more of scissors counters (c) a copy of this page

What to do:

Cut out the number cards. Put the grey 10 card face up. Put the others in a pile face down. Each player draws one card. The person whose card has the greatest difference from 10 wins a counter. Play until all the cards are gone. Who has the most counters?
\rightarrow

10
 0909

9
0990
8

0909

6	09000

$4 \quad 00000$

0

	0	\bigcirc	\bigcirc	0
\bigcirc	0	\bigcirc	0	0

Subtracting within 10 - subtracting using

 number bondsNow that we've learnt our number bonds up to 10, we can use them to solve number problems.
Look at this problem.
How many animals are left?

$$
5-1=4
$$

We can use a part-whole 5 model to show this.

1 Fill in the missing numbers.
a

$$
6-2
$$

$=\square$
$=\square$

b $\hat{y} \hat{y} \hat{y} \hat{y} \hat{y} \hat{y} \hat{y} \hat{y} \hat{y}=\square$

$$
\square-3
$$

$=\square$

C

Subtracting within 10 - subtracting using

 number bonds1 Complete the number sentences using the part-whole model.
a $8-\square=2$

b $6-\square=5$

c $5-\square=\square$

d $9-\square=\square$

e $7-\square=\square$

Subtracting within 10 - word problems

1 What are some words or signs we use when we subtract or talk about subtracting?

2 Write the missing numbers.

a Ali had 3 stripy socks. He loses 1.
How many does he have left?
$3-1=\square$
Ali now has \qquad socks.

b The shop has 7 shirts. They sell 3 shirts.
How many shirts do they have left?
$7-\square=\square$
There are \qquad shirts left.

Subtracting within 10 - word problems

1 Write the missing numbers.

a There are \qquad cats altogether.
3 cats are black.
How many cats are white?
$7-\square=\square$

There are \qquad white cats.

b Caty has 8 balloons.
\qquad of them are white.

How many black ones does she have?
$\square-\square=\square$
She has \qquad black balloons.

Subtracting within 10 - word problems
1 Cross out the objects and write the missing numbers.

a Cross out 3 petals.

$$
6-3=
$$

\square

There are \qquad petals left.
b Cross out 2 pineapples.
\square

$$
\square
$$

\square
There are \qquad pineapples left.
c Take away 4 stars.
\square - \square
\square
There are \qquad stars left.

Subtracting within 10 - word problems

1 Draw pictures and then write the fact.

a There are 10 coloured balloons. 6 of them are green.
The rest are blue.
How many are blue?
$10-6=\square \quad$ There are ___ blue balloons.
\square
b Class 1 S has 8 balls. 2 of them are tennis balls.
The rest are footballs.
How many footballs do they have?
$\square-\square=\square$ There are___ footballs.

c There are 7 apples. 5 apples are green. The rest are red. How many red apples are there?
$\square-\square=\square \quad$ There are ___ red apples.

57

Subtracting within 10 - word problems

What to do:

Cut out the subtraction stories and the number facts. Put the subtraction stories in a pile and turn them face down. Spread out the number facts. Player 1, take a story and find the number fact that matches and solves your story. Tell the story to your partner and show it with counters. Player 2, take your turn. Play until all the stories have been told.

How many stayed on the 도료

Nadia borrowed 5 She read 2 and gave them back．How many does she still have？

9 mums and dads came on the class 1 胃．
4 got scared and had to go 㽗田．
How many mums and dads stayed？

Dad cooked 8 for lunch．
2 were left．How many were eaten？

$$
7-6=1
$$

$$
9-4=5
$$

$10-3=7$

$$
5-2=3
$$

$$
8-6=2
$$

Subtraction within 20 －crossing out

When we add ones it can be helpful to split the teen number into tens and ones．
Look at 17 － $6=?$

1 Finish the facts．

$$
\text { c } 19-9=\square
$$

b $15-3=\square$
ロロロロロロロロロロ ロロロロロ

Subtraction within 20 - crossing out

1 Draw pictures and finish the facts.
a $15-3=\square$
b $18-4=\square$
c $19-9=\square$
d $17-6=\square$

Subtraction within 20 - crossing out

If we try to subtract the ones, we don't have enough ones, so instead we subtract the ones from the ten.
Look at 17 - $9=$?

1 Finish the facts.
a $18-9=\square$

b $15-7=\square$

Subtraction within 20 - counting back

Read the subtraction sentence: $18-5=$?
Start by finding the largest number and count back the smaller number.

The number you land on is the answer, so 18 - 5 = 13
1 Count back using the number line. Complete the number sentences.
a $16-3=\square$

b $19-5=\square$

c $14-6=\square$

d $17-3=\square$

Remember we count the jumps or spaces, not the numbers!

Subtraction within 20 - word problems

Remember! With bigger numbers it can be helpful to look at the tens and the ones separately.
Look at this problem.
There are 17 cubes. Mrs Green gives 5 cubes to Tom.
How many cubes are left?
17-5 = ?

OMEAD:

There are $\underline{12}$ cubes left.

1 Cross out the objects and solve the problem.
a There are 19 cubes. Lucy takes 4 away. How many are left?

There are \qquad cubes left.
b There are 16 butterflies. 5 fly away. How many are left?

There are \qquad butterflies left.

Subtraction within 20 - word problems

1 Cross out the objects and solve the problem.
There are 14 balloons. 3 float away. How many are left?

There are \qquad balloons left.

2 Draw objects and solve the problem.
a Lucy has 18 cubes. She gives 6 to Tom. How many does she have left?

Lucy has \qquad cubes left.
b Rory has 17 counters. 6 counters are yellow. The rest are red. How many counters are red?

$$
\square-\square=\square
$$

There are \qquad red counters.

Subtraction within 20 - word problems

1 Draw pictures and then write the fact.

a There are 20 coloured balloons. 10 of them are blue. The rest are red.
How many are red?
$20-10=\square \quad$ There are ___ red balloons.

b Class 15 has 17 apples. 6 of them are eaten. How many apples are left?
$\square-\square=\square$ There are ___ apples left.
\square
c There are 16 pencils. 5 of them are blunt and the rest are sharp. How many are sharp?
$\square-\square=\square$
There are \qquad sharp pencils.

Subtraction within 20 - doubles

We can use our addition strategies to help us solve subtraction problems.

$$
\text { Look at } 10-5=?
$$

If we know the doubles fact $\mathbf{5}+\mathbf{5}=\mathbf{1 0}$ we know that
$\frac{10-5}{1020: 5}$

1 Cover 1 side of the domino to help solve these subtraction problems.
a $4-2=\square$

b $8-4=$

c $6-3=\square$

d $12-6=\square$

2 Finish and match the addition and subtraction doubles number facts.

Subtraction within 20 - relating addition and subtraction

If we know our addition facts, we can use them to learn our subtraction facts.

$$
\begin{array}{r}
\text { If we know } 4+3=7 \\
\text { we also know } 7-3=4 \\
\text { and } 7-4=3
\end{array}
$$

\square
\square
\square
1 addition fact gives us 2 subtraction facts.
1 Use 2 coloured pencils and colour the boxes to match the addition fact. Write the matching subtraction facts.
a

$$
3+2=5
$$

b

$$
4+2=6
$$

C

$$
5+3=8
$$

\cdots
\vdots
\vdots
\vdots
\vdots

2 Fill in the missing numbers in these facts.

Subtraction within 20 - explore

You will need: a a partner a die

What to do:

Cut out the cards below and place them in a pile face down. Player 1, take a card and roll the die. Using a strategy of your choice, subtract the number on the die from the number on your card. Write the number fact in your maths book.

Player 2, have a turn. Play until you both have 10 facts. Ask your teacher to check your facts. Can you score $\frac{10}{10}$?

Addition and subtraction - fact families

Addition and subtraction are related. They do up and undo each other.

Can you see these number sentences in the picture below?

$$
\begin{aligned}
& 3+2=5 \\
& 2+3=5 \\
& 5-3=2 \\
& 5-2=3
\end{aligned}
$$

1 Write four number sentences for each picture.

\boldsymbol{a}							

$$
\begin{aligned}
& 3+4=7 \\
& 4+3=\square \\
& 7-4=3 \\
& 7-\square=3
\end{aligned}
$$

b

$$
\begin{aligned}
& 4+2=\square \\
& 2+\square=\square \\
& 6-\square=4 \\
& 6-\square=\square
\end{aligned}
$$

Addition and subtraction - fact families

1 Write four number sentences for each picture.

b

Addition and subtraction - fact families

1 This family only uses the numbers 3, 2 and 5. Give each family member a fact.

2 This family only uses the numbers 4, 2 and 6. Give each family member a fact.

Addition and subtraction - fact families

You will need:
 scissors
 a sticky note (c) a copy of page 74

What to do:

Cut out the hexagon house on page 74 . Think of 3 numbers you could make a fact family with or ask your teacher for some. Write the numbers in the windows and on the door.

Carefully cut the door so it swings open. Tape the sticky note to the back of the hexagon behind the door. Write the matching fact family on the note so that when you open the door, you see your fact family. Decorate your house.

What to do next:

Stick the classes' houses onto the wall or onto a road made from brown paper. Stand in front of each house and tell a partner what the fact family will be. Open the door and check to see if you are right!

Addition and subtraction - fact families

Addition and subtraction - tens

Use the number tracks to practice counting in tens.

1 Count in tens down the snake and write the missing numbers.
a

Addition and subtraction - tens

We can use a 100 square to help us add tens. Moving down one square is the same as counting ten 1 s across the hundred square.

1 Complete these addition sentences using the 100 square.
a $10+10=\square$
b $10+30=\square$
c $20+10=\square$
d $20+30=\square$
e $30+20=\square$
f $40+10=\square$
$912+10=\square$
h $18+30=\square$
i $27+10=\square$
j $25+20=\square$
k $21+20=\square$
l $13+30=$ \square

Addition and subtraction - tens

We can use a 100 square to help us subtract tens. Moving up one square is the same as counting back ten 1 s across the hundred square.

-10| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
| 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
| 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 |
| 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |
| 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 |
| 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |

1 Complete these subtraction sentences using the 100 square.
a $40-10=\square$
b $30-10=\square$
c $20-10=\square$
d $50-40=\square$
e $30-20=\square$
f $40-20=\square$
g $23-10=\square$
h $49-30=\square$
i $45-10=\square$
j $44-20=\square$
k $37-20=\square$
l $32-20=\square$

Addition and subtraction - counting in tens and ones

1 Count the numbers of tens and ones. Complete the table and number sentence.

b \square tens $+\square$ ones $=\square$

c \square tens $+\square$ ones $=\square$
d

When there are no ones we use 0 as a placeholder.

Addition and subtraction - counting on 20-50

We can also use the 100 square to	11	12	13	14	15	16	17	18	9	20
help us count on	21	22	23	24	25	26		8	29	30
s and ones.	31	32	33	34	35	36			39	40
	41	42	43	44	45	46	47	48	49	50

1 Count on 1 or 2 to finish these number facts.
a $35+1=\square$
b $16+1=\square$
c $43+1=\square$
d $24+2=$
e $41+2=\square$ f $37+2=\square$

2 Count on in tens and ones to finish these number sentences.
a $33+12=\square$
b $28+21=\square$
c $12+24=\square$
d $14+13=\square$
e $32+16=\square$
f $17+21=$

3 Fill in the gaps.

	+ 1	+ 10	+ 11
12	!	2	
28			
33		49	
40	4		

Addition and subtraction - counting back 20-50

We can also use the 100 square to	11	12	13	14	15	16	17	18	19	20
help us count back	21	22	23	24	25	26	27	28	29	30
tens and ones.	31	32	33	34	35	36			39	40
3	41	42	43	44	45	46			49	50
$47-11=37$	4	42	43	44						

1 Count back 1 or 2 to finish these number facts.
a $25-1=\square$
b $12-1=\square$
c $39-1=\square$
d $23-2=\square$
e $36-2=\square$
f $44-2=\square$

2 Count back in tens and ones to finish these number sentences.
a $50-10=\square$
b $35-11=\square$
c $27-15=\square$
d $34-21=\square$
e $48-25=\square$
f $44-13=\square$

3 Fill in the gaps.

	-1	-10	-11
23		\ddots	
49			
31	$\boxed{ }$		
24			

Addition and subtraction - explore

You will need: a cos a partner counters

What to do:

Cut out the number cards below and put them in a pile face down.
Decide if you are playing an adding or subtracting game and if you are going to race against each other or take turns.
Take 2 cards and add or subtract the 2 numbers. If you are subtracting, make sure you start with the bigger number. Record your fact. Use counters to help if you want. Play until you have used all the cards. Ask your teacher to check your facts!

0	1	2	3	4
5	6	7	8	9
10	0	1	2	3
4	5	6	7	8
9		5	6	7

Addition and subtraction - explore

You will need: a partner scissors a pencil

What to do:

Draw dots on the right side to make the dominoes add to 10 . Cut out the cards and write the matching fact and its turnaround on the back. Put them in a pile with the dots facing up.
Take turns taking a domino card. Without looking at the back, say the matching fact and turnaround. Check. If you are right, you keep the card! Play until they are all gone.

Addition and subtraction - explore

You will need:

What to do:

Cut out and choose a game board each. Take turns rolling a die. If you can use the number to complete one of your number facts, write it in. If not, the play moves on. The first person to fill their game board wins. -

Player 1

$\square+3=6$
$\square+4=10$
$\square+2=4$
$\square-2=4$
$\square-1=2$

Player 3

$\square+4=8$
$\square+5=11$
$\square+5=6$

$$
\square-1=2
$$

$$
8-\square=6
$$

Player 2
$\square+2=5$
$\square+6=11$
$\square+1=5$
$\square-2=4$
$7-\square=5$
Player 4
$\square+4=9$
$\square+3=7$
$\square+5=6$
$\square-3=3$
$\square-1=1$

Addition and subtraction - explore

You will need: a partner 10 counters

What to do:

Player 1, put some of the 10 counters in 1 hand and some in the other hand. Put both hands behind your back.
Player 2, point to a hand. Player 1 will show you what's in that hand and your job is to guess how many counters are in the other hand.

If you are right, you score a point. Swap roles. The first person to get 5 points, wins.

What to do next:

Too easy? Play the game with 15 or 20 counters.

Addition and subtraction - explore

You will need:

partners
a die
a mini packet of coloured sweets or sultanas each

What to do:

Count how many coloured sweets or sultanas are in your packet. Take turns rolling the die. Subtract that number of sweets, then say and write your number fact. If you are right, those sweets are yours to be eaten!

Play until you get to zero. You must
 roll the exact number to finish. Who finishes first?

My number facts:

Addition and subtraction - explore

What to do:

Look at the bowling pins. Which pins could you knock down to score 6?
Find 2 different ways and record them below. Remember, you can knock down more than 2 pins!

What to do next:

Find 2 different ways to score 7 and 8 .

My facts:

Addition and subtraction - word problems

Sometimes the tricky part of a word problem is not doing the fact, but working out whether you need to add or subtract. We need to think, 'Does this problem want me to join groups? Then I know I am adding. Am I comparing groups or taking a group away? Then I know I am subtracting.'
Looking out for clue words can help too. These are words like altogether, difference and left. They tell us if we are adding or subtracting.

1 Work out if the problem is asking you to add or subtract and write the number fact to match. Circle the clue words.

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
a Ellie eats 3 0
\(\qquad\) \\
Then she eats 4 more. How many \(\because\) does she eat altogether?
\(\square\)
\(\square\)
\(\square\) \(=\) \(\square\)
\end{tabular} \& \begin{tabular}{l}
b Thomas had 8 5 sailed away. \\
How many did he have left?

$=$ \square
\end{tabular}

\hline c There are 20 6 roll away. How many (8) are left?
\square
\square

\square $=$ \square \& | d Bronte has 3 |
| :--- |
| Lucy has 9 |
| How many teddies do they have altogether? \square ! \square $=$ \square |

\hline
\end{tabular}

Addition and subtraction - word problems

1 Solve:
a At the start of the day there were 10 . At the end of the day there were 3 left. How many were sold?
b Ari planted 64. Then he planted some more. Now he has 13 in his garden. How many more did he plant?
c Choose a number between 5 and 20. Write it in the box. How many addition and/or subtraction facts can you write that include this number?

Multiplication - equal groups

When we count in groups, the groups must be equal or the same. Are these groups equal?

No, one group has 1 more strawberry. They are not equal.

1 Are these groups equal? If so, draw =. If not, draw \neq in the boxes.
a

b

C

d

2 Draw dots on the right side of the dominoes to make them equal.
a

b

c

3 Mmmmmm, sweets. Draw some sweets on the bags. Make sure each bag has the same amount. This means they are equal.

Multiplication - equal groups

How many bananas? Let's look at these equal groups.

There are $\mathbf{3}$ bunches of

$2+2+2=6$
There are $\mathbf{2}$ in each bunch. $2 \times 3=6$
There are $\mathbf{6}$ altogether.
3 groups of 2 is 6

1 How many ...
a ?

$$
\begin{aligned}
& 3+3=\square \\
& 2 \times 3=\square
\end{aligned}
$$

b ?

$$
\begin{array}{r}
3+3+3+3+3= \\
5 \times 3=\square
\end{array}
$$

Multiplication - equal groups

1 How many ...

a ?

$$
\begin{array}{r}
2+2+2+2= \\
4 \times 2=\square
\end{array}
$$

b ?

2 Draw and finish the number facts.
Draw 3 cupcakes on each plate.

How many cakes?

$$
3+3=\square \quad 2 \times 3=\square
$$

Multiplication - equal groups

1 Draw and finish the number facts.
a Draw 5 faces in each window.

How many faces?
\square groups of \square altogether.

$$
5+5+5=\square \quad 3 \times 5=\square
$$

b Draw 2 cats on each mat.

How many cats?
\square groups of \square Wu2 is \square 3

Multiplication - equal groups

You will need:
 pencils

What to do:

These children are all turning 5 today.

Tom

Tia

Tim

Tara
a Draw the right number of candles on the cakes.
b How many candles are there altogether? \qquad

What to do next:

How did you work it out? Explain your strategy to a partner.

Multiplication - groups and arrays

We can arrange objects into groups or into rows. This is $\mathbf{2}$ groups of $\mathbf{4}$ apples. This is $\mathbf{2}$ rows of $\mathbf{4}$ apples.

There are $\mathbf{8}$ apples altogether.

There are still $\mathbf{8}$ apples altogether.

1 How many are there?

b

2 Draw:
a 2 groups of 3 flowers
b 2 rows of 3 flowers

How many flowers? \square How many flowers? \square

Multiplication - word problems

You will need:
 pencils

counters

a partner

What to do:

Work with your partner to find solutions for the following problems. Use counters or draw pictures to help.
a There are 5 boats at sea. Each boat carries 3 sailors. How many sailors are at sea?

b 1F line up after lunch in pairs. There are 10 sets of pairs. How many students in 1F?

c 1F have planted a flower garden. They have planted 5 flowers in each row. There are 15 flowers altogether. How many rows are there?

Multiplication - meaning of \times symbol

We know that ...

+ means add or join - means subtract = means the same as.
What does \times mean? It means 'groups of' or 'rows of'.

$2 \times 5 \quad$| 2 |
| :---: |
| We have 2 rows of 5 |
| 2 |\quad rows of 5 is 10 altogether. $\mathbf{2} \times \mathbf{5}=\mathbf{1 0}$

1 How many?

2 Draw 3 rows of faces. Put 3 faces in each row.

3 rows of 3 is

Multiplication - explore

You will need: $\underset{\substack{\text { @o } \\ 4}}{ }$ a partner
 counters
 a rubber

What to do:

Cut out the cards and put them in a pile. Take turns taking a card. Make the fact with counters, then write the answer in the box. Ask your partner to check. If it's right, you keep the card. If it's wrong, rub out your answer and put the card on the bottom of the pile. Play until all the cards are gone.

6 groups of 2	3 groups of 3	2 groups of 4
$6 \times 2=\square$	$3 \times 3=\square$	$2 \times 4=\square$
$2+2+2+2+2+2=\square$	$3+3+3=\square$	$4+4=\square$
4 groups of 3	1 group of 7	2 groups of 5
$4 \times 3=\square$	$1 \times 7=\square$	$2 \times 5=\square$
$3+3+3+3=\square$	$7=\square$	$5+5=\square$
2 groups of 8	3 groups of 2	5 groups of 1
$2 \times 8=\square$	$3 \times 2=\square$	$5 \times 1=\square$
$8+8=\square$	$2+2+2=\square$	$1+1+1+1=\square$
1 group of 5	4 groups of 2	2 groups of 2
$1 \times 5=\square$	$4 \times 2=\square$	$2 \times 2=\square$
$5=\square$	$2+2+2+2=\square$	$2+2=\square$

Multiplication - explore

What to do:

You are about to build towers. One of you will roll for the number of towers, one of you will roll for the number of cubes in the tower. Decide who does what. Roll both dice, then build the matching towers.
On a sticky note, write the matching fact and put it in front of the towers. Play until you have created 5 facts.

What to do next:

Take turns building a set of towers. Your partner works out what fact it shows and writes it.

Division - sharing

When we share things into groups evenly, every group has the same number. This means they are equal. We call this division. The symbol for division is \div.

Here are $\mathbf{6}$ cupcakes.

Here are $\mathbf{3}$ children.

If we share the cakes out evenly, every child gets 2 cupcakes. Yum!
 We call this 'sharing fairly' because each share is equal.

$$
\begin{aligned}
& 6 \text { divided by } 3 \text { is } 2 \\
& 6 \quad \div \quad 3=2
\end{aligned}
$$

1 Look at these shares. Are they fair?
\boldsymbol{X} the ones that are not fair.
a

Division - sharing

You will need: a may a partner

What to do:

Cut out the bears and honey pots.
Share out the honey pots so that each bear gets a fair share of the honey pots.
How many (y) does each get?
\square

What to do next:

a Put the (y) back. Hide 4 (4) behind your back.
How many (y) does each get now? \square
b Put the
 behind your back.

Now you have 2 . How many (y) does each get now? \square

Division - sharing

What to do:

Use counters or draw pictures to solve these sharing problems. Show how you solved the problem.
a There are 10 on $5 \sum_{\text {man }}^{\text {man }}$.
How many $\sqrt{5}$ are there on each \square
10 divided by 5 is \square
$10 \div 5=\square$
b There are 8 and 4 toy
How many does each get?

8 divided by 4 is
$8 \div 4=\square$
c 6 lay $12 \bigcirc$.
How many \bigcirc does each lay?

12 divided by 6 is
$12 \div 6=\square$

Division - grouping

Sometimes, we know how many things we want in a group but we don't know how many groups we can make.
Each needs 2 O. We have 6 O. How many can we decorate?

We can decorate 3 .

$$
6 \div 2=3
$$

1 Circle groups of 2 feet.
a How many boys?
\square

b How many girls?

c How many birds?

2 Draw 24 eyes. Circle groups of 2. How many ?

Division - grouping

You will need: a partner 24 lolly sticks

What to do:

You are at the zoo. Pretend the lolly sticks are animal legs and work out how many animals could be at the zoo. Use all 24 lolly sticks for each question. Show your solutions.
a How many are at the zoo?

b How many are at the zoo? \square
c How many 10 are at the zoo? \square
d How many
 are at the zoo?

